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Introduction

The purpose of this book is to teach solid idiomatic Go programming using
all the features the language provides, as well as the most commonly used Go
packages from Go’s standard library. The book is also designed to serve as a
useful reference once the language is learned. To meet both of these goals the
book is quite comprehensive and tries to cover every topic in just one place—and
with forward and backward cross-references throughout.

Go is quite C-like in spirit, being a small and efficient language with convenient
low-level facilities such as pointers. Yet Go also offers many features associated
with high- or very high-level languages, such as Unicode strings, powerful built-
in data structures, duck typing, garbage collection, and high-level concurrency
support that uses communication rather than shared data and locks. Go also
has a large and wide-ranging standard library.

The reader is assumed to have programming experience in a mainstream pro-
gramming language such as C, C++, Java, Python, or similar, although all of Go’s
unique features and idioms are illustrated with complete runnable examples
that are fully explained in the text.

To successfully learn any programming language it is necessary to write pro-
grams in that language. To this end the book’s approach is wholly practical, and
readers are encouraged to experiment with the examples, try the exercises, and
write their own programs to get hands-on experience. As with all my previous
books, the quoted code snippets are of “live code”; that is, the code was auto-
matically extracted from .go source files and directly embedded in the PDF that
went to the publisher—so there are no cut and paste errors, and the code works.
Wherever possible, small but complete programs and packages are used as ex-
amples to provide realistic use cases. The examples, exercises, and solutions are
available online at www.gtrac.eu/gobook.html.

The book’s key aim is to teach the Go language, and although many of the
standard Go packages are used, not all of them are. This is not a problem, since
reading the book will provide enough Go knowledge for readers to be able to
make use of any of the standard packages, or any third-party Go package, and
of course, be able to create their own packages.

Why Go?
The Go programming language began as an internal Google project in 2007. The

original design was by Robert Griesemer and Unix luminaries Rob Pike and Ken
Thompson. On November 10, 2009, Go was publicly unveiled under a liberal
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open source license. Go is being developed by a team at Google which includes
the original designers plus Russ Cox, Andrew Gerrand, Ian Lance Taylor, and
many others. Go has an open development model and many developers from
around the world contribute to it, with some so trusted and respected that they
have the same commit privileges as the Googlers. In addition, many third-party
Go packages are available from the Go Dashboard (godashboard.appspot.com/
project).

Go is the most exciting new mainstream language to appear in at least 15
years and is the first such language that is aimed squarely at 21st century
computers—and their programmers.

Go is designed to scale efficiently so that it can be used to build very big appli-
cations—and to compile even a large program in mere seconds on a single com-
puter. The lightning-fast compilation speed is made possible to a small extent
because the language is easy to parse, but mostly because of its dependency
management. If file app.go depends on file pkgl.go, which in turn depends on
pkg2.go, in a conventional compiled language app.go would need both pkgl.go’s
and pkg2.go’s object files. But in Go, everything that pkg2.go exports is cached
in pkgl.go’s object file, so pkgl.go’s object file alone is sufficient to build app. go.
For just three files this hardly matters, but it results in huge speedups for large
applications with lots of dependencies.

Since Go programs are so fast to build, it is practical to use them in situations
where scripting languages are normally used (see the sidebar “Go Shebang
Scripts”, » 10). Furthermore, Go can be used to build web applications using
Google’s App Engine.

Go uses a very clean and easy-to-understand syntax that avoids the complexity
and verbosity of older languages like C++ (first released in 1983) or Java (first
released in 1995). And Go is a strongly statically typed language, something
which many programmers regard as essential for writing large programs. Yet
Go’s typing is not burdensome due to Go’s short “declare and initialize” variable
declaration syntax (where the compiler deduces the type so it doesn’t have to be
written explicitly), and because Go supports a powerful and convenient version
of duck typing.

Languages like C and C++ require programmers to do a vast amount of book-
keeping when it comes to memory management—bookkeeping that could be
done by the computer itself, especially for concurrent programs where keeping
track can be fiendishly complicated. In recent years C++ has greatly improved
in this area with various “smart” pointers, but is only just catching up with Java
with regard to its threading library. Java relieves the programmer from the
burden of memory management by using a garbage collector. C has only third-
party threading libraries, although C++ now has a standard threading library.
However, writing concurrent programs in C, C++, or Java requires considerable
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bookkeeping by programmers to make sure they lock and unlock resources at
the right times.

The Go compiler and runtime system takes care of the tedious bookkeeping. For
memory management Go has a garbage collector, so there’s no need for smart
pointers or for manually freeing memory. And for concurrency, Go provides a
form of CSP (Communicating Sequential Processes) based on the ideas of com-
puter scientist C. A. R. Hoare, that means that many concurrent Go programs
don’t need to do any locking at all. Furthermore, Go uses goroutines—very
lightweight processes which can be created in vast numbers that are automati-
cally load-balanced across the available processors and cores—to provide much
more fine-grained concurrency than older languages’ thread-based approach-
es. In fact, Go’s concurrency support is so simple and natural to use that when
porting single-threaded programs to Go it often happens that opportunities for
using concurrency arise that lead to improved runtimes and better utilization of
machine resources.

Go is a pragmatic language that favors efficiency and programmer convenience
over purity. For example, Go’s built-in types and user-defined types are not the
same, since the former can be highly optimized in ways the latter can’t be. Go
also provides two fundamental built-in collection types: slices (for all practical
purposes these are references to variable-length arrays) and maps (key-value
dictionaries or hashes). These collection types are highly efficient and serve
most purposes extremely well. However, Go supports pointers (it is a fully com-
piled language—there’s no virtual machine getting in the way of performance),
so it is possible to create sophisticated custom types, such as balanced binary
trees, with ease.

While C supports only procedural programming and Java forces programmers
to program everything in an object-oriented way, Go allows programmers to use
the paradigm best suited to the problem. Go can be used as a purely procedural
language, but also has excellent support for object-oriented programming. As
we will see, though, Go’s approach to object orientation is radically different
from, say, C++, Java, or Python—and is easier to use and much more flexible
than earlier forms.

Like C, Go lacks generics (templates in C++-speak); however, in practice the
other facilities that Go provides in many cases obviate the need for generics.
Go does not use a preprocessor or include files (which is another reason why it
compiles so fast), so there is no need to duplicate function signatures as there is
in C and C++. And with no preprocessor, a program’s semantics cannot change
behind a Go programmer’s back as it can with careless #defines in C and C++.

Arguably, C++, Objective-C, and Java have all attempted to be better Cs (the
latter indirectly as a better C++). Go can also be seen as an attempt to be a better
C, even though Go’s clean, light syntax is reminiscent of Python—and Go’s slices
and maps are very similar to Python’s lists and dicts. However, Go is closer in
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spirit to C than to any other language, and can be seen as an attempt to avoid C’s
drawbacks while providing all that’s best in C, as well as adding many powerful
and useful features that are unique to Go.

Originally Go was conceived as a systems programming language for developing
large-scale programs with fast compilation that could take advantage of dis-
tributed systems and multicore networked computers. Go’s reach has already
gone far beyond the original conception and it is now being used as a highly
productive general-purpose programming language that’s a pleasure to use and
maintain.

The Structure of the Book

Chapter 1 begins by explaining how to build and run Go programs. The chapter
then provides a brief overview of Go’s syntax and features, as well as introduc-
ing some of its standard library. This is done by presenting and explaining a se-
ries of five very short examples, each illustrating a variety of Go features. This
chapter is designed to provide just a flavor of the language and to give readers a
feel for the scope of what is required to learn Go. (How to obtain and install Go
is also explained in this chapter.)

Chapters 2 to 7 cover the Go language in depth. Three chapters are devoted
to built-in data types: Chapter 2 covers identifiers, Booleans, and numbers;
Chapter 3 covers strings; and Chapter 4 covers Go’s collection types.

Chapter 5 describes and illustrates Go’s statements and control structures.
It also explains how to create and use custom functions, and completes the
chapters that show how to create procedural nonconcurrent programs in Go.

Chapter 6 shows how to do object-oriented programming in Go. This chapter
includes coverage of Go structs used for aggregating and embedding (delegat-
ing) values, and Go interfaces for specifying abstract types, as well as how to
produce an inheritance-like effect in some situations. The chapter presents
several complete fully explained examples to help ensure understanding, since
Go’s approach to object orientation may well be different from most readers’ ex-
perience.

Chapter 7 covers Go’s concurrency features and has even more examples than
the chapter on object orientation, again to ensure a thorough understanding of
these novel aspects of the Go language.

Chapter 8 shows how to read and write custom binary, Go binary, text, JSON,
and XML files. (Reading and writing text files is very briefly covered in Chap-
ter 1 and several subsequent chapters since this makes it easier to have useful
examples and exercises.)

The book’s final chapter is Chapter 9. This chapter begins by showing how to
import and use standard library packages, custom packages, and third-party
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packages. It also shows how to document, unit test, and benchmark custom
packages. The chapter’s last sections provide brief overviews of the tools
provided with the gc compiler, and of Go’s standard library.

Although Go is quite a small language, it is a very rich and expressive language
(as measured in syntactic constructs, concepts, and idioms), so there is a surpris-
ing amount to learn. This book shows examples in good idiomatic Go style right
from the start.* This approach, of course, means that some things are shown be-
fore being fully explained. We ask the reader to take it on trust that everything
will be explained over the course of the book (and, of course, cross-references are
provided for everything that is not explained on the spot).

Go is a fascinating language, and one that is really nice to use. It isn’t hard to
learn Go’s syntax and idioms, but it does introduce some novel concepts that may
be unfamiliar to many readers. This book tries to give readers the conceptual
breakthroughs—especially in object-oriented Go programming and in concur-
rent Go programming—that might take weeks or even months for those whose
only guide is the good but rather terse documentation.
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This chapter provides a series of five explained examples. Although the exam-
ples are tiny, each of them (apart from “Hello Who?”) does something useful,
and between them they provide a rapid overview of Go’s key features and some
of its key packages. (What other languages often call “modules” or “libraries”
are called packages in Go terminology, and all the packages supplied with Go as
standard are collectively known as the Go standard library.) The chapter’s pur-
pose is to provide a flavor of Go and to give a feel for the scope of what needs to
be learned to program successfully in Go. Don’t worry if some of the syntax or
idioms are not immediately understandable; everything shown in this chapter is
covered thoroughly in subsequent chapters.

Learning to program Go the Go way will take a certain amount of time and
practice. For those wanting to port substantial C, C++, Java, Python, and other
programs to Go, taking the time to learn Go—and in particular how its object-
orientation and concurrency features work—will save time and effort in the long
run. And for those wanting to create Go applications from scratch it is best to
do so making the most of all that Go offers, so again the upfront investment in
learning time is important—and will pay back later.

1.1. Getting Going

Go programs are compiled rather than interpreted so as to have the best possible
performance. Compilation is very fast—dramatically faster than can be the
case with some other languages, most notably compared with C and C++.
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The Go Documentation @

Go’s official web site is golang.org which hosts the most up-to-date Go docu-
mentation. The “Packages” link provides access to the documentation on all
the Go standard library’s packages—and to their source code, which can be
very helpful when the documentation itself is sparse. The “Commands” link
leads to the documentation for the programs distributed with Go (e.g., the
compilers, build tools, etc.). The “Specification” link leads to an accessible, in-
formal, and quite thorough Go language specification. And the “Effective Go”
link leads to a document that explains many best practices.

The web site also features a sandbox in which small (somewhat limited) Go
programs can be written, compiled, and run, all online. This is useful for be-
ginners for checking odd bits of syntax and for learning the Go fmt package’s
sophisticated text formatting facilities or the regexp package’sregular expres-
sion engine. The Go web site’s search box searches only the Go documenta-
tion; to search for Go resources generally, visit go-lang.cat-v.org/go-search.

The Go documentation can also be viewed locally, for example, in a web
browser. To do this, run Go’s godoc tool with a command-line argument that
tells it to operate as a web server. Here’s how to do this in a Unix console
(xterm, gnome-terminal, konsole, Terminal.app, or similar):

$ godoc -http=:8000
Or in a Windows console (i.e., a Command Prompt or MS-DOS Prompt window):
C:\>godoc —http=:8000

The port number used here is arbitrary—simply use a different one if it
conflicts with an existing server. This assumes that godoc is in your PATH.

To view the served documentation, open a web browser and give it a location
of http://localhost:8000. This will present a page that looks very similar to
the golang.org web site’s front page. The “Packages” link will show the docu-
mentation for Go’s standard library, plus any third-party packages that have
been installed under GOR0OOT. If GOPATH is defined (e.g., for local programs and
packages), a link will appear beside the “Packages” link through which the
relevant documentation can be accessed. (The GOROOT and GOPATH environment
variables are discussed later in this chapter and in Chapter 9.)

It is also possible to view the documentation for a whole package or a single
item in a package in the console using godoc on the command line. For ex-
ample, executing godoc image NewRGBA will output the documentation for the
image.NewRGBA() function, and executing godoc image/png will output the docu-
mentation for the entire image/png package.
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The standard Go compiler is called gc and its toolchain includes programs such
as 5¢, 6g, and 8g for compiling, 51, 61, and 81 for linking, and godoc for viewing the
Go documentation. (These are 5g.exe, 61.exe, etc., on Windows.) The strange
names follow the Plan 9 operating system’s compiler naming conventions where
the digit identifies the processor architecture (e.g., “5” for ARM, “6” for AMD-
64—including Intel 64-bit processors—and “8” for Intel 386.) Fortunately, we
don’t need to concern ourselves with these tools, since Go provides the high-level
go build tool that handles the compiling and linking for us.

All the examples in this book—available from www.qtrac.eu/gobook.html—have
been tested using gc on Linux, Mac OS X, and Windows using Go 1. The Go
developers intend to make all subsequent Go 1.x versions backward compatible
with Go 1, so the book’s text and examples should be valid for the entire 1.x
series. (If incompatible changes occur, the book’s examples will be updated to
the latest Go release, so as time goes by, they may differ from the code shown in
the book.)

To download and install Go, visit golang.org/doc/install.html which provides
instructions and download links. At the time of this writing, Go 1is available in
source and binary form for FreeBSD 7+, Linux 2.6+, Mac OS X (Snow Leopard
and Lion), and Windows 2000+, in all cases for Intel 32-bit and AMD 64-bit
processor architectures. There is also support for Linux on ARM processors. Go
prebuilt packages are available for the Ubuntu Linux distribution, and may be
available for other Linuxes by the time you read this. For learning to program
in Go it is easier to install a binary version than to build Go from scratch.

Programs built with gc use a particular calling convention. This means that
programs compiled with gc can be linked only to external libraries that use the
same calling convention—unless a suitable tool is used to bridge the difference.
Go comes with support for using external C code from Go programs in the form of
the cgo tool (golang.org/cmd/cgo), and at least on Linux and BSD systems, both C
and C++ code can be used in Go programs using the SWIG tool (www.swig.org).

In addition to gc there is also the gccgo compiler. This is a Go-specific front end
to gcc (the GNU Compiler Collection) available for gcc from version 4.6. Like gc,
gccgo may be available prebuilt for some Linux distributions. Instructions for
building and installing gccgo are given at golang.org/doc/gccgo_install.html.

1.2. Editing, Compiling, and Running

Go programs are written as plain text Unicode using the UTF-8 encoding.*
Most modern text editors can handle this automatically, and some of the most
popular may even have support for Go color syntax highlighting and automatic

* Some Windows editors (e.g., Notepad) go against the Unicode standard’s recommendation and
insert the bytes 0xEF, 0xBB, 0xBF, at the start of UTF-8 files. This book’s examples assume that UTF-8
files do not have these bytes.
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Go Shebang Scripts @

One side effect of Go’s fast compilation is that it makes it realistic to write
Go programs that can be treated as shebang #! scripts on Unix-like systems.
This requires a one-off step of installing a suitable tool. At the time of this
writing, two rival tools provide the necessary functionality: gonow (github.com/
kless/gonow), and gorun (wiki.ubuntu.com/gorun).

Once gonow or gorun is available, we can make any Go program into a
shebang script. This is done with two simple steps. First, add either
#!/usr/bin/env gonow or #!/usr/bin/env gorun, as the very first line of the .go
file that contains the main() function (in package main). Second, make the file
executable (e.g., with chmod +x). Such files can only be compiled by gonow or
gorun rather than in the normal way since the #! line is not legal in Go.

When gonow or gorun executes a .go file for the first time, it will compile the
file (extremely fast, of course), and then run it. On subsequent uses, the
program will only be recompiled if the .go source file has been modified since
the previous compilation. This makes it possible to use Go to quickly and
conveniently create various small utility programs, for example, for system
administration tasks.

indentation. If your editor doesn’t have Go support, try entering the editor’s
name in the Go search engine to see if there are suitable add-ons. For editing
convenience, all of Go’s keywords and operators use ASCII characters; however,
Go identifiers can start with any Unicode letter followed by any Unicode letters
or digits, so Go programmers can freely use their native language.

To get a feel for how we edit, compile, and run a Go program we’ll start with
the classic “Hello World” program—although we’ll make it a tiny bit more
sophisticated than usual. First we will discuss compiling and running, then in
the next section we will go through the source code—in file hello/hello.go—in
detail, since it incorporates some basic Go ideas and features.

All of the book’s examples are available from www.qtrac.eu/gobook.html and
unpack to directory goeg. So file hello.go’s full path (assuming the exam-
ples were unpacked in the home directory—although anywhere will do) is
$HOME/goeg/src/hello/hello.go. When referring to files the book always assumes
the first three components of the path, which is why in this case the path is giv-
en only as hello/hello.go. (Windows users must, of course, read “/”s as “\”’s and
use the directory they unpacked the examples into, such as C:\goeg or %HOME-
PATH%\goeg.)

If you have installed Go from a binary package or built it from source and in-
stalled it as root or Administrator, you should have at least one environment
variable, GOROOT, which contains the path to the Go installation, and your PATH
should now include $GOR00T/bin or %GOR00T%\bin. To check that Go is installed
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correctly, enter the following in a console (xterm, gnome-terminal, konsole, Termi-
nal.app, or similar):

$ go version
Or on Windows in an MS-DOS Prompt or Command Prompt window:
C:\>go version

If you get a “command not found” or “‘go’ is not recognized...” error message
then it means that Go isn’t in the PATH. The easiest way to solve this on Unix-like
systems (including Mac OS X) is to set the environment variables in .bashrc
(or the equivalent file for other shells). For example, the author’s .bashrc file
contains these lines:

export GOROOT=$HOME/opt/go
export PATH=$PATH:$GOR0O0T/bin

Naturally, you must adjust the values to match your own system. (And, of
course, this is only necessary if the go version command fails.)

On Windows, one solution is to create a batch file that sets up the environment
for Go, and to execute this every time you start a console for Go programming.
However, it is much more convenient to set the environment variables once and
for all through the Control Panel. To do this, click Start (the Windows logo), then
Control Panel, then System and Security, then System, then Advanced system settings,
and in the System Properties dialog click the Environment Variables button, then the
New... button, and add a variable with the name GOR00T and a suitable value,
such as C:\Go. In the same dialog, edit the PATH environment variable by adding
the text ;C:\Go\bin at the end—the leading semicolon is vital! In both cases
replace the C:\Go path component with the actual path where Go is installed if
it isn’t C:\Go. (Again, this is only necessary if the go version command failed.)

From now on we will assume that Go is installed and the Go bin directory
containing all the Go tools is in the PATH. (It may be necessary—once only—to
open a new console window for the new settings to take effect.)

Two steps are required to build Go programs: compiling and linking.* Both of
these steps are handled by the go tool which can not only build local programs
and packages, but can also fetch, build, and install third-party programs
and packages.

* Since the book assumes the use of the ge compiler, readers using gccgo will need to follow the
compile and link process described in golang.org/doc/gccgo_install.html. Similarly, readers using
other compilers will need to compile and link as per their compiler’s instructions.
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For the go tool to be able to build local programs and packages, there are three
requirements. First, the Go bin directory ($G0R00T/bin or %GOR00T%\bin) must be
in the path. Second, there must be a directory tree that has an src directory
and under which the source code for the local programs and packages resides.
For example, the book’s examples unpack to goeg/src/hello, goeg/src/bigdigits,
and so on. Third, the directory above the src directory must be in the GOPATH
environment variable. For example, to build the book’s hello example using the
go tool, we must do this:

$ export GOPATH=$HOME/goeg
$ cd $GOPATH/src/hello
$ go build

We can do almost exactly the same on Windows:

C:\>set GOPATH=C:\goeg
C:\>cd %gopath%\src\hello
C:\goeg\src\hello>go build

In both cases we assume that the PATH includes $GOR00T/bin or %GOR00T%\bin. Once
the go tool has built the program we can run it. By default the executable is
given the same name as the directory it isin (e.g., hello on Unix-like systems and
hello.exe on Windows). Once built, we can run the program in the usual way.

$ ./hello
Hello World!

Or:

$ ./hello Go Programmers!
Hello Go Programmers!

On Windows it is very similar:

C:\goeg\src\hello>hello Windows Go Programmers!
Hello Windows Go Programmers!

We have shown what must be typed in bold and the console’s text in roman. We
have also assumed a $ prompt, but it doesn’t matter what it is (e.g., C:\>).

Note that we do not need to compile—or even explicitly link—any other pack-
ages (even though as we will see, hello.go uses three standard library packages).
This is another reason why Go programs build so quickly.
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If we have several Go programs, it would be convenient if all their executables
could be in a single directory that we could add to our PATH. Fortunately, the go
tool supports this as follows:

$ export GOPATH=$HOME/goeg
$ cd $GOPATH/src/hello
$ go install

Again, we can do the same on Windows:

C:\>set GOPATH=C:\goeg
C:\>cd %gopath%\src\hello
C:\goeg\src\hello>go install

The go install command does the same as go build only it puts the executable
in a standard location ($GOPATH/bin or %GOPATH%\bin). This means that by adding
a single path ($GOPATH/bin or %GOPATH%\bin) to our PATH, all the Go programs that
we install will conveniently be in the PATH.

In addition to the book’s examples, we are likely to want to develop our own
Go programs and packages in our own directory. This can easily be accom-
modated by setting the GOPATH environment variable to two (or more) colon-
separated paths (semicolon-separated on Windows); for example, export
GOPATH=$HOME/app/go: $HOME/goeg or SET GOPATH=C:\app\go;C:\goeg.* In this case
we must put all our program and package’s source code in $HOME/app/go/src or
C:\app\go\src. So, if we develop a program called myapp, its .go source files would
go in $HOME/app/go/src/myapp or C:\app\go\src\myapp. And if we use go install to
build a program in a GOPATH directory where the GOPATH has two or more directo-
ries, the executable will be put in the corresponding directory’s bin directory.

Naturally, it would be tedious to export or set the GOPATH every time we wanted
to build a Go program, so it is best to set this environment variable permanently.
This can be done by setting GOPATH in the .bashrc file (or similar) on Unix-like
systems (see the book’s example’s gopath.sh file). On Windows it can be done
either by writing a batch file (see the book’s example’s gopath.bat file), or by
adding it to the system’s environment variables: Click Start (the Windows logo),
then Control Panel, then System and Security, then System, then Advanced system
settings, and in the System Properties dialog click the Environment Variables button,
then the New... button, and add a variable with the name GOPATH and a suitable
value, such as C:\goeg or C:\app\go;C:\goeg.

Although Go uses the go tool as its standard build tool, it is perfectly possible to
use make or some of the modern build tools, or to use alternative Go-specific build

* From now on we will almost always show Unix-style command lines only, and assume that
Windows programmers can mentally translate.
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tools, or add-ons for popular IDEs (Integrated Development Environments)
such as Eclipse and Visual Studio.

1.3. Hello Who?

Now that we have seen how to build the hello program we will look at its source
code. Don’t worry about understanding all the details—everything shown
in this chapter (and much more!) is covered thoroughly in the subsequent
chapters. Here is the complete hello program (in file hello/hello.go):

// hello.go
package main

import ( ©
"fmt"
"og"
"strings

)

func main() {
who := "World!" @
if len(os.Args) > 1 { /* 0s.Args[0] is "hello" or "hello.exe" */ ©
who = strings.Join(os.Args[1:], " ") @
}
fmt.Println("Hello", who) @

}

Go uses C++-style comments: // for single-line comments that finish at the end
of the line and /* ... */ for comments that can span multiple lines. It is conven-
tional in Go to mostly use single-line comments, with spanning comments often
used for commenting out chunks of code during development*

Every piece of Go code exists inside a package, and every Go program must have
amain package with amain() function which serves as the program’s entry point,
that is, the function that is executed first. In fact, Go packages may also have
init() functions that are executed before main(), as we will see (§1.7, » 40); full
details are given later (§5.6.2, » 224). Notice that there is no conflict between
the name of the package and the name of the function.

Go operates in terms of packages rather than files. This means that we can split
a package across as many files as we like, and from Go’s point of view if they all
have the same package declaration, they are all part of the same package and
no different than if all their contents were in a single file. Naturally, we can also

* We use some simple syntax highlighting and sometimes highlight lines or annotate them with
numbers (@, @, ...), for ease of reference in the text. None of this is part of the Go language.
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break our applications’ functionality into as many local packages as we like, to
keep everything neatly modularized, something we will see in Chapter 9.

The import statement (14 <, @) imports three packages from the standard li-
brary. The fmt package provides functions for formatting text and for read-
ing formatted text (§3.5, » 93), the os package provides platform-independent
operating-system variables and functions, and the strings package provides
functions for manipulating strings (§3.6.1, » 107).

Go’s fundamental types support the usual operators (e.g., + for numeric addition
and for string concatenation), and the Go standard library supplements these by
providing packages of functions for working with the fundamental types, such
asthe strings packageimported here. Itis also possible to create our own custom
types based on the fundamental types and to provide our own methods—that
is, custom type-specific functions—for them. (We will get a taste of thisin §1.5,
» 21, with full coverage in Chapter 6.)

The reader may have noticed that the program has no semicolons, that the im-
ports are not comma-separated, and that the if statement’s condition does not
require parentheses. In Go, blocks, including function bodies and control struc-
ture bodies (e.g., for if statements and for for loops), are delimited using braces.
Indentation is used purely to improve human readability. Technically, Go state-
ments are separated by semicolons, but these are put in by the compiler, so we
don’t have to use them ourselves unless we want to put multiple statements on
the same line. No semicolons and fewer commas and parentheses give Go pro-
grams a lighter look and require less typing.

Go functions and methods are defined using the func keyword. The main pack-
age’s main() function always has the same signature—it takes no arguments
and returns nothing. When main.main() finishes the program will terminate and
return 0 to the operating system. Naturally, we can exit whenever we like and
return our own choice of value, as we will see (§1.4, > 16).

The first statement in the main() function (14 <, @; using the := operator) is
called a short variable declaration in Go terminology. Such a statement both
declares and initializes a variable at the same time. Furthermore, we don’t need
to specify the variable’s type because Go can deduce that from the initializing
value. So in this case we have declared a variable called who of type string, and
thanks to Go’s strong typing we may only assign strings to who.

As with most languages the if statement tests a condition—in this case, how
many strings were entered on the command-line—which if satisfied executes
the corresponding brace-delimited block. We will see a more sophisticated
if statement syntax later in this chapter (§1.6, » 29), and further on (§5.2.1,
> 192).

The os.Args variable is a slice of strings (14 <, ®). Arrays, slices, and other col-
lection data types are covered in Chapter 4 (§4.2, » 148). For now it is sufficient
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to know that a slice’s length can be determined using the built-in len() function
and its elements can be accessed using the [] index operator using a subset of
the Python syntax. In particular, slice[n] returns the slice’s nth element (count-
ing from zero), and slice[n:] returns another slice which has the elements from
the nth element to the last element. In the collections chapter we will see the
full generality of Go’s syntax in this area. In the case of 0s.Args, the slice should
always have at least one string (the program’s name), at index position 0. (All Go
indexing is 0-based.)

If the user has entered one or more command line arguments the if condition
is satisfied and we set the who string to contain all the arguments joined up as a
single string (14 <, @). In this case we use the assignment operator (=), since if
we used the short variable declaration operator (:=) we would end up declaring
and initializing a new who variable whose scope was limited to the if statement’s
block. The strings.Join() function takes a slice of strings and a separator
(which could be empty, i.e., ""), and returns a single string consisting of all the
slice’s strings with the separator between each one. Here we have joined them
using a single space between each.

Finally, in the last statement (14 <, ®), we print Hello, a space, the string held
in the who variable, and a newline. The fmt package has many different print
variants, some like fmt.Println() which will neatly print whatever they are
given, and others like fmt.Printf() that use placeholders to provide very fine
control over formatting. The print functions are covered in Chapter 3 (§3.5,
>» 93).

The hello program presented here has shown far more of the language’s features
than such programs conventionally do. The subsequent examples continue in
this vein, covering more advanced features while keeping the examples as short
as possible. The idea here is to simply acquire some basic familiarity with the
language and to get to grips with building, running, and experimenting with
simple Go programs, while at the same time getting a flavor of Go’s powerful and
novel features. And, of course, everything presented in this chapteris explained
in detail in the subsequent chapters.

1.4. Big Digits—Two-Dimensional Slices

The bigdigits program (in file bigdigits/bigdigits.go) reads a number entered
on the command line (as a string), and outputs the same number onto the
console using “big” digits. Back in the twentieth century, at sites where lots of
users shared a high-speed line printer, it used to be common practice for each
user’s print job to be preceded by a cover page that showed some identifying
details such as their username and the name of the file being printed, using this
kind of technique.
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We will review the code in three parts: first the imports, then the static data, and
then the processing. But right now, let’s look at a sample run to get a feel for
how it works:

$ ./bigdigits 290175493

222 9999 000 1 77777 55555 4 9999 333
2 29 9 0 60 11 7 5 44 9 9 3 3
2 9 9 0 06 1 7 5 44 9 9 3
2 9999 0 06 1 7 555 4 4 9999 33
2 9 0 06 1 7 5 444444 9 3
2 9 0 0 1 7 5 5 4 9 3 3
22222 9 000 111 7 555 4 9 333

Each digit is represented by a slice of strings, with all the digits together repre-
sented by a slice of slices of strings. Before looking at the data, here is how we
could declare and initialize single-dimensional slices of strings and numbers:

longWeekend := []string{"Friday", "Saturday", "Sunday", "Monday"}
var lowPrimes = []int{2, 3, 5, 7, 11, 13, 17, 19}

Slices have the form []Type, and if we want to initialize them we can immedi-
ately follow with a brace-delimited comma-separated list of elements of the cor-
responding type. We could have used the same variable declaration syntax for
both, but have used a longer form for the lowPrimes slice to show the syntactic
difference and for a reason that will be explained in a moment. Since a slice’s
Type can itself be a slice type we can easily create multidimensional collections
(slices of slices, etc.).

The bigdigits program needs to import only four packages.

import (
“fmt"
II'LOgII
IIOS
"path/filepath"

)

The fmt package provides functions for formatting text and for reading format-
ted text (§3.5, » 93). The log package provides logging functions. The os pack-
age provides platform-independent operating-system variables and functions
including the os.Args variable of type []string (slice of strings) that holds the
command-line arguments. And the path package’s filepath package provides
functions for manipulating filenames and paths that work across platforms.
Note that for packages that are logically inside other packages, we only specify
the last component of their name (in this case filepath) when accessing them in
our code.
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For the bigdigits program we need two-dimensional data (a slice of slices of
strings). Here is how we have created it, with the strings for digit 0 laid out to
illustrate how a digit’s strings correspond to rows in the output, and with the
strings for digits 3 to 8 elided.

var bigDigits = [][]string{

{" 000 ",

"0 0",

"0 0",

"0 0",

"0 0",

"0 0",

" 000 "},

", "2z","7z","12"*, 1", 1", "111"},

{" 222", "2 2"," 2", " 2 ", "2 " "2 ", "22222"},
// ... 3to8 ...

{" 9999", "9 9", "9 9" " Q999" " 9", " 9", " 9"},

}

Variables declared outside of any function or method may not use the := oper-
ator, but we can get the same effect using the long declaration form (with key-
word var) and the assignment operator (=) as we have done here for the bigDigits
variable (and did earlier for the lowPrimes variable). We still don’t need to specify
bigDigits’ type since Go can deduce that from the assignment.

We leave the bean counting to the Go compiler, so there is no need to specify the
dimensions of the slice of slices. One of Go’s many conveniences is its excellent
support for composite literals using braces, so we don’t have to declare a data
variable in one place and populate it with data in another—unless we want to,
of course.

The main() function that reads the command line and uses the data to produce
the output is only 20 lines.

func main() {
if len(os.Args) ==1{ ©
fmt.Printf("usage: %s <whole-number>\n", filepath.Base(o0s.Args[0]))
os.Exit(1)
}

string0fDigits := o0s.Args[1]
for row := range bigDigits[0] { @
line := ""
for column := range string0fDigits { ©
digit := stringOfDigits[column] - '0' @
if 0 <= digit && digit <=9 { @
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line += bigDigits[digit]l[row] + © " @
} else {

log.Fatal("invalid whole number")
}

}
fmt.Println(line)

}

The program begins by checking to see if it was invoked with any command-line
arguments. If it wasn’t, len(os.Args) will be 1 (recall that os.Args[0] holds the
program’s name, so the slice’s length is normally at least 1), and the first if
statement (18 <, @) will be satisfied. In this case we output a suitable usage
message using the fmt.Printf() function that accepts % placeholders similar to
those supported by the C/C++ printf() function or by Python’s % operator. (See
§3.5, » 93 for full details.)

The path/filepath package provides path manipulation functions—for example,
the filepath.Base() function returns the basename (i.e., the filename) of the
given path. After outputting the message the program terminates using the
0s.Exit() function and returns 1 to the operating system. On Unix-like systems
a return value of 0 is used to indicate success, with nonzero values indicating a
usage error or a failure.

The use of the filepath.Base() function illustrates a nice feature of Go: When a
package is imported, no matter whether it is top-level or logically inside another
package (e.g., path/filepath), we always refer to it using only the last component
of its name (e.g., filepath). It is also possible to give packages local names to
avoid name collisions; Chapter 9 provides the details.

If at least one command-line argument was given, we copy the first one into
the string0fDigits variable (of type string). To convert the number that the
user entered into big digits we must iterate over each row in the bigDigits slice
to produce each line of output, that is, the first (top) string for each digit, then
the second, and so on. We assume that all the bigDigits’ slices have the same
number of rows and so take the row count from the first one. Go’s for loop has
various syntaxes for different purposes; here (18 <, ® and 18 <, ®) we have used
for ... range loops that return the index positions of each item in the slices they
are given.

The row and column loops part of the code could have been written like this:
for row := 0; row < len(bigDigits[0]); row++ {

line := ""
for column := 0; column < len(string0fDigits); column++ {
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This is a form familiar to C, C++, and Java programmers and is perfectly valid
in Go.* However, the for ... range syntax is shorter and more convenient. (Go’s
for loops are covered in §5.3, » 203.)

At each row iteration we set that row’s line to be an empty string. Then we
iterate over the columns (i.e., the characters) in the string0fDigits string we
received from the user. Go strings hold UTF-8 bytes, so potentially a character
might be represented by two or more bytes. This isn’t an issue here because we
are only concerned with the digits 0, 1, ..., 9 each of which is represented by a
single byte in UTF-8 and with the same byte value as in 7-bit ASCII. (We will
see how to iterate over a string character by character—regardless of whether
the characters are single- or multibyte—in Chapter 3.)

When we index a particular position in a string we get the byte value at that
position. (In Go the byte type is a synonym for the uint8 type.) So we retrieve the
byte value of the command-line string at the given column and subtract the byte
value of digit O from it to get the number it represents (18 <, ®). In UTF-8 (and
7-bit ASCII) the character '0' is code point (character) 48 decimal, the character
'1' is code point 49, and so on. So if, for example, we have the character '3' (code
point 51), we can get its integer value by doing the subtraction '3' - '0' (i.e., 51
— 48) which results in an integer (of type byte) of value 3.

Go uses single quotes for character literals, and a character literal is an integer
that’s compatible with any of Go’s integer types. Go’s strong typing means
we cannot add, say, an int32 to an intl6 without explicit conversion, but Go’s
numeric constants and literals adapt to their context, so in this context '0' is
considered to be a byte.

If the digit (of type byte)is in range (18 <, ®) we can add the appropriate string
to the line. (In the if statement the constants 0 and 9 are considered to be bytes
because that’s digit’s type, but if digit was of a different type, say, int, they
would be treated as that type instead.) Although Go strings are immutable (i.e.,
they cannot be changed), the += append operator is supported to provide a nice
easy-to-use syntax. (It works by replacing the original string under the hood.)
There is also support for the + concatenate operator which returns a new string
that is the concatenation of its left and right string operands. (The string type
is covered fully in Chapter 3.)

To retrieve the appropriate string (19 <, ®) we access the bigDigits’s slice that
corresponds to the digit, and then within that to the row (string) we need.

If the digit is out of range (e.g., due to the string0fDigits containing a nondigit),
we call the log.Fatal() function with an error message. This function logs the

* Unlike C, C++, and Java, in Go the ++ and -- operators may only be used as statements, not
expressions. Furthermore, they may only be used as postfix operators, not prefix operators. This
means that certain order of evaluation problems cannot occur in Go—so thankfully, expressions like
fi++) and a/i] = b[++i] cannot be written in Go.
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date, time, and error message—to 0s.Stderr if no other log destination is explic-
itly specified—and calls os.Exit(1) to terminate the program. There is also a
log.Fatalf() function that does the same thing and which accepts % placehold-
ers. We didn’t use log.Fatal() in the first if statement (18 <, @) because we
want to print the program’s usage message without the date and time that the
log.Fatal() function normally outputs.

Once all the number’s strings for the given row have been accumulated the
complete line is printed. In this example, seven lines are printed because each
digit in the bigDigits slice of strings is represented by seven strings.

One final point is that the order of declarations and definitions doesn’t generally
matter. So in the bigdigits/bigdigits.go file we could declare the bigDigits
variable before or after the main() function. In this case we have put main() first
since for the book’s examples we usually prefer to order things top-down.

The first two examples have covered a fair amount of ground, but both of them
show material that is familiar from other mainstream languages even though
the syntax is slightly different. The following three examples take us beyond
the comfort zone to illustrate Go-specific features such as custom Go types, Go
file handling (including error handling) and functions as values, and concurrent
programming using goroutines and communication channels.

1.5. Stack—Custom Types with Methods

Although Go supports object-oriented programming it provides neither class-
es nor inheritance (is-a relationships). Go does support the creation of custom
types, and Go makes aggregation (has-a relationships) extremely easy. Go also
allows for the complete separation of a type’s data from its behavior, and sup-
ports duck typing. Duck typing is a powerful abstraction mechanism that means
that values can be handled (e.g., passed to functions), based on the methods they
provide, regardless of their actual types. The terminology is derived from the
phrase, “If it walks like a duck, and quacks like a duck, it is a duck”. All of this
produces a more flexible and powerful alternative to the classes and inheritance
approach—but does require those of us used to the more traditional approach to
make some significant conceptual adjustments to really benefit from Go’s object
orientation.

Go represents data using the fundamental built-in types such as keyword! ! struct
bool, int, and string, or by aggregations of types using structs.* Go’s custom
types are based on the fundamental types, or on structs, or on other custom
types. (We will see some simple examples later in this chapter; §1.7, » 40.)

*Unlike C++, Go’s structs are not classes in disguise. For example, Go’s structs support aggregation
and delegation, but not inheritance.
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Go supports both named and unnamed custom types. Unnamed types with
the same structure can be used interchangeably; however, they cannot have
any methods. (We will discuss this more fully in §6.4, » 275.) Any named cus-
tom type can have methods and these methods together constitute the type’s
interface. Named custom types—even with the same structure—are not inter-
changeable. (Throughout the book any reference to a “custom type” means a
named custom type, unless stated otherwise.)

An interface is a type that can be formally defined by specifying a particular
set of methods. Interfaces are abstract and cannot be instantiated. A concrete
(i.e., noninterface) type that has the methods specified by an interface fulfills
the interface, that is, values of such a concrete type can be used as values of the
interface’s type as well as of their own actual type. Yet no formal connection
need be established between an interface and a concrete type that provides the
methods specified by the interface. It is sufficient for a custom type to have the
interface’s methods for it to satisfy that interface. And, of course, a type can
satisfy more than one interface simply by providing all the methods for all the
interfaces we want it to satisfy.

The empty interface (i.e., the interface that has no methods) is specified as
interface{}.* Since the empty interface makes no demands at all (because it
doesn’t require any methods), it can stand for any value (in effect like a pointer
to any value), whether the value is of a built-in type or is of a custom type. (Go’s
pointers and references are explained later; §4.1, » 140.) Incidentally, in Go
terminology we talk about types and values rather than classes and objects or
instances (since Go has no classes).

Function and method parameters can be of any built-in or custom type—or of
any interface type. In the latter case this means that a function can have a
parameter that says, for example, “pass a value that can read data”, regardless
of what that value’s type actually is. (We will see this in practice shortly; §1.6,
> 29.)

Chapter 6 covers all of these matters in detail and presents many examples to
ensure that the ideas are understood. For now, let’s just look at a very simple
custom type—a stack—starting with how values are created and used, and then
looking at the implementation of the custom type itself.

We will start with the output produced by a simple test program:

$ ./stacker
81.52

[pin clip needle]
-15

hay

* Go’s empty interface can serve the same role as a reference to a Java Object or as C/C++s void*.
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Each item was popped from the custom stack and printed on its own line.

The simple test program that produced this output is stacker/stacker.go. Here
are the imports it uses:

import (
Ilfmtll
"stacker/stack"

)

The fmt package is part of Go’s standard library, but the stack package is a local
package specific to the stacker application. A Go program or package’s imports
are first searched for under the GOPATH path or paths, and then under GOROOT.
In this particular case the program’s source code is in $HOME/goeg/src/stacker/
stacker.go and the stack package is in $HOME/goeg/src/stacker/stack/stack.go.
The go tool will build both of them so long as the GOPATH is (or includes) the path
$HOME/goegq/.

Import paths are specified using Unix-style “/’s, even on Windows. Every local
package should be stored in a directory with the same name as the package.
Local packages can have their own packages (e.g., like path/filepath), in exactly
the same way as the standard library. (Creating and using custom packages is
covered in Chapter 9.)

Here’s the simple test program’s main() function that produced the output:

func main() {

var haystack stack.Stack
haystack.Push("hay")
haystack.Push(-15)
haystack.Push([]string{"pin", "clip", "needle"})
haystack.Push(81.52)
for {

item, err := haystack.Pop()

if err !'= nil {

break
}
fmt.Println(item)

}

The function begins by declaring the haystack variable of type stack.Stack. It is
conventional in Go to always refer to types, functions, variables, and other items
in packages using the syntax pkg.item, where pkg is the last (or only) component
of the package’s name. This helps prevent name collisions. We then push some
items onto the stack and then pop them off and print each one until there are
no more left.
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One amazingly convenient aspect of our custom stack is that despite Go’s strong
typing, we are not limited to storing homogeneous items (items all of the same
type), but can freely mix heterogeneous items (items of various types). This
is because the stack.Stack type simply stores interface{} items (i.e., values
of any type) and doesn’t care what their types actually are. Of course, when
those items are used, then their type does matter. Here, though, we only use the
fmt.Println() function and this uses Go’s introspection facilities (from the re-
flect package) to discover the types of the items it is asked to print. (Reflection
is covered in a later chapter; §9.4.9, » 427.)

Another nice Go feature illustrated by the code is the for loop with no conditions.
This is an infinite loop, so in most situations we will need to provide a means
of breaking out of the loop—for example, using a break statement as here, or
a return statement. We will see an additional for syntax in the next example
(§1.6, » 29); the complete range of for syntaxes is covered in Chapter 5.

Go functions and methods can return a single value or multiple values. It is
conventional in Go to report errors by returning an error value (of type error)
as the last (or only) value returned by a function or method. The custom stack.
Stack type respects this convention.

Now that we have seen the custom stack.Stack type in use we are ready to
review its implementation (in file stacker/stack/stack.go).

package stack
import "errors"

type Stack []interface{}

The file starts conventionally by specifying its package name. Then it imports
other packages that it needs—in this case just one, errors.

When we define a named custom type in Go what we are doing is binding an
identifier (the type’s name) to a new type that has the same underlying rep-
resentation as an existing (built-in or custom) type—and which is treated by
Go as different from the underlying representation. Here, the Stack type is a
new name for a slice (i.e., a reference to a variable-length array) of interface{}
values—and is considered to be different from a plain []interface{}.

Because all Go types satisfy the empty interface, values of any type can be
stored in a Stack.

The built-in collection types (maps and slices), communication channels (which
can be buffered), and strings, can all return their length (or buffer size) using
the built-in len() function. Similarly, slices and channels can also report their
capacity (which may be greater than the length being used) using the built-in
cap() function. (All of Go’s built-in functions are listed in Table 5.1, » 187, with
cross-references to where they are covered; slices are covered in Chapter 4; §4.2,
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» 148.) It is conventional for custom collection types—our own, and those in the
Go standard library—to support corresponding Len() and Cap() methods when
these make sense.

Since the Stack type uses a slice for its underlying representation it makes sense
to provide Stack.Len() and Stack.Cap() methods for it.

func (stack Stack) Len() int {
return len(stack)

}

Both functions and methods are defined using the func keyword. However, in the
case of methods the type of value to which the method applies is written after
the func keyword and before the method’s name, enclosed in parentheses. After
the function or method’s name comes a—possibly empty—parenthesized list of
comma-separated parameters (each written in the form variableName type). After
the parameters comes the function or method’s opening brace (if it has no return
value), or a single return value (e.g., as a type name such as the int returned by
the Stack.Len() method shown here), or a parenthesized list of return values,
followed by an opening brace.

In most cases a variable name for the value on which the method is called is also
given—as here where we have used the name stack (and with no conflict with
the package’s name). The value on which the method is called is known in Go
terminology as the receiver*

In this example the type of the receiver is Stack, so the receiver is passed by
value. This means that any changes made to the receiver would be made on a
copy of the original value and in effect lost. This is no problem for methods that
don’t modify the receiver, such as the Stack.Len() method shown here.

The Stack.Cap() method is almost identical to the Stack.Len() method (and so
is not shown). The only difference is that the Stack.Cap() method returns the
cap() rather than the len() of the receiver stack. The source code also includes
a Stack.IsEmpty() method, but this is so similar to Stack.Len()—it just returns a
bool indicating whether the stack’s len() equals 0—that again it isn’t shown.

func (stack *Stack) Push(x interface{}) {
xstack = append(*stack, x)

}

The Stack.Push() method is called on a pointer to a Stack (explained in a mo-
ment), and is passed a value (x) of any type. The built-in append() function takes
a slice and one or more values and returns a (possibly new) slice which has the

*In other languages the receiver is typically called this or self; using such names works fine in Go,
but is not considered to be good Go style.
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original slice’s contents, plus the given value or values as its last element or ele-
ments. (See §4.2.3,>» 156.)

If the stack has previously had items popped from it (> 28), the underlying
slice’s capacity is likely to be greater than its length, so the push could be very
cheap: simply a matter of putting the x item into the len(stack) position and
increasing the stack’s length by one.

The Stack.Push() method always works (unless the computer runs out of memo-
ry), so we don’t need to return an error value to indicate success or failure.

If we want to modify a value we must make its receiver a pointer.* A pointer
is a variable that holds the memory address of another value. One reason that
pointers are used is for efficiency—for example, if we have a value of a large type
it is much cheaper to pass a pointer to the value as a parameter than to pass the
value itself. Another use is to make a value modifiable. For example, when a
variable is passed into a function the function gets a copy of the value (e.g., the
stack passed into the stack.Len() function; 25 «). This means that if we make
any changes to the variable inside the function, they will have no effect on the
original value. If we need to modify the original value—as here where we want
to append to the stack—we must pass a pointer to the original value, and then
inside the function we can modify the value that the pointer points to.

A pointer is declared by preceding the type name with a star (i.e., an asterisk, *).
So here, in the Stack.Push() method, the stack variable is of type *Stack, that is,
the stack variable holds a pointer to a Stack value and not an actual Stack value.
We can access the actual Stack value that the pointer points to by dereferencing
the pointer—this simply means that we access the value the pointer points to.
Dereferencing is done by preceding the variable name with a star. So here, when
we write stack we are referring to a pointer to a Stack (i.e., to a *Stack), and when
we write *stack we are dereferencing the pointer, that is, referring to the actual
Stack that the pointer points to.

So, in Go (and C and C++ for that matter), the star is overloaded to mean multi-
plication (when between a pair of numbers or variables, e.g., x * y), pointer dec-
laration (when preceding a type name, e.g., z *MyType), and pointer dereference
(when preceding a pointer variable’s name, e.g., *z). Don’t worry too much about
these matters for now: Go’s pointers are fully explained in Chapter 4.

Note that Go’s channels, maps, and slices are all created using the make() func-
tion, and make() always returns a reference to the value it created. References
behave very much like pointers in that when they are passed to functions any
changes made to them inside the function affect the original channel, map, or
slice. However, references don’t need to be dereferenced, so in most cases there’s
no need to use stars with them. But if we want to modify a slice inside a func-

*Go pointers are essentially the same as in C and C++ except that pointer arithmetic isn’t supported
—or necessary; see §4.1, » 140.
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tion or method using append() (as opposed to simply changing one of its existing
items), then we must either pass the slice by pointer, or return the slice (and set
the original slice to the function or method’s return value), since append() some-
times returns a different slice reference than the one it was passed.

The Stack type uses a slice for its representation and therefore Stack values
can be used with functions that operate on a slice, such as append() and len().
Nonetheless, Stack values are values in their own right, distinct from their
representation, so they must be passed by pointer if we want to modify them.

func (stack Stack) Top() (interface{}, error) {
if len(stack) == 0 {
return nil, errors.New("can't Top() an empty stack")
}
return stack[len(stack)-1], nil

}

The Stack.Top() method returns the item at the top of the stack (the item that
was added last) and a nil error value; or a nil item and a non-nil error value,
if the stack is empty. The stack receiver is passed by value since the stack
isn’t modified.

The error typeis an interface type (§6.3, » 265) which specifies a single method,
Error() string. In general, Go’s library functions return an error as their last (or
only) return value to indicate success (where error is nil) or failure. Here, we
have made our Stack type work like a standard library type by creating a new
error value using the errors package’s errors.New() function.

Go uses nil for zero pointers (and for zero references); that is, for pointers that
point to nothing and for references that refer to nothing.* Such pointers should
be used only in conditions or assignments; methods should not normally be
called on them.

Constructors are never called implicitly in Go. Instead Go guaranteesthat when
a value is created it is always initialized to its zero value. For example, numbers
are initialized to 0, strings to the empty string, pointers to nil, and the fields
inside structs are similarly initialized. So there is no uninitialized data in Go,
thus eliminating a major source of errors that afflicts many other program-
ming languages. If the zero value isn’t suitable we can write a construction
function—and call it explicitly—as we do here to create a new error. It is also
possible to prevent values of a type being created without using a constructor
function, as we will see in Chapter 6.

*Go’s nil is in effect the same as NULL or 0 in C and C++, null in Java, and nil in Objective-C.
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If the stack is nonempty we return its topmost value and a nil error value. Since
Go uses 0-based indexing the first element in a slice or array is at position 0 and
the last element is at position len(sliceOrArray) - 1.

There is no formality when returning more than one value from a function or
method; we simply list the types we are returning after the function or method’s
name and ensure that we have at least one return statement that has a corre-
sponding list of values.

func (stack xStack) Pop() (interface{}, error) {
theStack := xstack
if len(theStack) == 0 {
return nil, errors.New("can't Pop() an empty stack")
}
x := theStack[len(theStack)-1] @
xstack = theStack[:len(theStack)-1] @
return x, nil

}

The Stack.Pop() method is used to remove and return the top (last added) item
from the stack. Like the Stack.Top() method it returns the item and a nil error,
or if the stack is empty, a nil item and a non-nil error.

The method must have a receiver that is a pointer since it modifies the stack by
removing the returned item. For syntactic convenience, rather than referring
to *stack (the actual stack that the stack variable points to) throughout the
method, we assign the actual stack to a local variable (theStack), and work with
that variable instead. This is quite cheap, because *stack is pointing to a Stack,
which uses a slice for its representation, so we are really assigning little more
than a reference to a slice.

If the stack is empty we return a suitable error. Otherwise we retrieve the
stack’s top (last) item and store it in a local variable (x). Then we take a slice of
the stack (which itself is a slice). The new slice has one less element than the
original and is immediately set to be the value that the stack pointer points to.
And at the end, we return the retrieved value and a nil error. We can reasonably
expect any decent Go compiler to reuse the slice, simply reducing the slice’s
length by one, while leaving its capacity unchanged, rather than copying all the
data to a new slice.

The item to return is retrieved using the [] index operator with a single index
(0@); in this case the index of the slice’s last element.

The new slice is obtained by using the [] slice operator with an index range
(®). An index range has the form first:end. If first is omitted—as here—0 is
assumed, and if end is omitted, the len() of the slice is assumed. The slice thus
obtained has elements with indexes from and including the first up to and
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excluding the end. So in this case, by specifying the last index as one less than
the length, we slice up to the last but one element, effectively removing the last
element from the slice. (Slice indexing is covered in Chapter 4, §4.2.1, » 153.)

In this example we used Stack receivers rather than pointers (i.e., of type *Stack)
for those methods that don’t modify the Stack. For custom types with lightweight
representations (say, a few ints or strings), this is perfectly reasonable. But for
heavyweight custom types it is usually best to always use pointer receivers since
a pointer is much cheaper to pass (typically a simple 32- or 64-bit value), than
a large value, even for methods where the value isn’t modified.

A subtle point to note regarding pointers and methods is that if we call a method
on a value, and the method requires a pointer to the value it is called on, Go
is smart enough to pass the value’s address rather than a copy of the value
(providing the value is addressable; §6.2.1, » 258). Correspondingly, if we call
a method on a pointer to a value, and the method requires a value, Go is smart
enough to dereference the pointer and give the method the pointed-to value*

As this example illustrates, creating custom types in Go is generally straight-
forward, and doesn’t involve the cumbersome formalities that many other lan-
guages demand. Go’s object-oriented features are covered fully in Chapter 6.

1.6. Americanise—Files, Maps, and Closures

To have any practical use a programming language must provide some means
of reading and writing external data. In previous sections we had a glimpse of
Go’s versatile and powerful print functions from its fmt package; in this section
we will look at Go’s basic file handling facilities. We will also look at some more
advanced features such as Go’s treatment of functions and methods as first-class
values which makes it possible to pass them as parameters. And in addition we
will make use of Go’s map type (also known as a data dictionary or hash).

This section provides enough of the basics so that programs that read and write
text files can be written—thus making the examples and exercises more inter-
esting. Chapter 8 provides much more coverage of Go’s file handling facilities.

By about the middle of the twentieth century, American English surpassed
British English as the most widely used form of English. In this section’s
example we will review a program that reads a text file and writes out a copy of
the file into a new file with any words using British spellings replaced with their
U.S. counterparts. (This doesn’t help with differences in semantics or idioms,
of course.) The program is in the file americanise/americanise.go, and we will
review it top-down, starting with its imports, then its main() function, then the
functions that main() calls, and so on.

*This is why Go does not have or need the -> indirection operator used by C and C++.
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import (

"bufio"
n fmt n

"io/ioutil”

||1_Og||

"path/filepath"

“regexp"

"strings"

)

All the americanise program’s imports are from Go’s standard library. Packages
can be nested inside one another without formality, as the io package’s ioutil
package and the path package’s filepath package illustrate.

The bufio package provides functions for buffered I/0, including ones for read-
ing and writing strings from and to UTF-8 encoded text files. The io package
provides low-level I/O functions—and the io.Reader and io.Writer interfaces we
need for the americanise() program. The io/ioutil package provides high-level
file handling functions. The regexp package provides powerful regular expres-
sion support. The other packages (fmt, log, filepath, and strings) have been men-
tioned in earlier sections.

func main() {

inFilename, outFilename, err :

if err != nil {
fmt.Println(err)
0s.Exit(1)

}

2]

filenamesFromCommandLine() @

inFile, outFile := 0s.Stdin, o0s.Stdout @
if inFilename !'= "" {
if inFile, err = os.Open(inFilename); err != nil {

(}iefer inFile.Close()
if outFilename != "" {
log.Fatal(err)
glefer outFile.Close()
}

log.Fatal(err)

(4]

if outFile, err = os.Create(outFilename); err != nil {

5]

if err = americanise(inFile, outFile); err !'= nil {
log.Fatal(err)
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}

The main() function gets the input and output filenames from the command line,
creates corresponding file values, and then passes the files to the americanise()
function to do the work.

The function begins by retrieving the names of the files to read and write and an
error value. If there was a problem parsing the command line we print the error
(which contains the program’s usage message), and terminate the program.
Some of Go’s print functions use reflection (introspection) to print a value using
the value’s Error() string method if it has one, or its String() string method if it
has one, or as best they can otherwise. If we provide our own custom types with
one of these methods, Go’s print functions will automatically be able to print
values of our custom types, as we will see in Chapter 6.

If erris nil, we have inFilename and outFilename strings (which may be empty),
and we can continue. Files in Go are represented by pointers to values of
type os.File, and so we create two such variables initialized to the standard
input and output streams (which are both of type *os.File). Since Go functions
and methods can return multiple values it follows that Go supports multiple
assignments such as the ones we have used here (30 <, ©, ©).

Each filename is handled in essentially the same way. If the filename is empty
the file has already been correctly set to 0s.Stdin or 0s.Stdout (both of which are
of type *o0s.File, i.e., a pointer to an os.File value representing the file); but if
the filename is nonempty we create a new *0s.File to read from or write to the
file as appropriate.

The os.0pen() function takes a filename and returns an *o0s.File value that can
be used for reading the file. Correspondingly, the os.Create() function takes a
filename and returns an *o0s.File value that can be used for reading or writing
the file, creating the file if it doesn’t exist and truncating it to zero length if
it does exist. (Go also provides the os.0penFile() function that can be used to
exercise complete control over the mode and permissions used to open a file.)

In fact, the os.0Open(), os.Create(), and os.0OpenFile() functions return two
values: an *0s.File and nil if the file was opened successfully, or nil and an
error if an error occurred.

If err is nil we know that the file was successfully opened so we immediately
execute a defer statement to close the file. Any function that is the subject of a
defer statement (§5.5, » 212) must be called—hence the parentheses after the
functions’ names (30 <, @, ®—but the calls only actually occur when the func-
tion in which the defer statements are written returns. So the defer statement
“captures” the function call and sets it aside for later. This means that the de-
fer statement itself takes almost no time at all and control immediately passes
to the following statement. Thus, the deferred os.File.Close() method won’t
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actually be called until the enclosing function—in this case, main()—returns
(whether normally or due to a panic, discussed in a moment), so the file is open
to be worked on and yet guaranteed to be closed when we are finished with it, or
if a panic occurs.

If we fail to open the file we call log.Fatal() with the error. As we noted in a
previous section, this function logs the date, time, and error (to os.Stderr un-
less another log destination is specified), and calls os.Exit() to terminate the
program. When os.Exit() is called (directly, or by log.Fatal()), the program is
terminated immediately—and any pending deferred statements are lost. This
is not a problem, though, since Go’s runtime system will close any open files, the
garbage collector will release the program’s memory, and any decent database
or network that the application might have been talking to will detect the ap-
plication’s demise and respond gracefully. Just the same as with the bigdigits
example, we don’t use log.Fatal() in the first if statement (30 <, ®), because the
err contains the program’s usage message and we want to print this without the
date and time that the log.Fatal() function normally outputs.

In Go a panic is a runtime error (rather like an exception in other languages).
We can cause panics ourselves using the built-in panic() function, and can stop
a panic in its tracks using the recover() function (§5.5, » 212). In theory, Go’s
panic/recover functionality can be used to provide a general-purpose exception
handling mechanism—but doing so is considered to be poor Go practice. The
Go way to handle errors is for functions and methods to return an error value
as their sole or last return value—or nil if no error occurred—and for callers to
always check the error they receive. The purpose of panic/recover is to deal with
genuinely exceptional (i.e., unexpected) problems and not with normal errors*

With both files successfully opened (the os.Stdin, os.Stdout, and os.Stderr files
are automatically opened by the Go runtime sytem), we call the americanise()
function to do the processing, passing it the files on which to work. If ameri-
canise() returns nil the main() function terminates normally and any deferred
statements—in this case, ones that close the inFile and outFile if they are not
0s.Stdin and os.Stdout—are executed. And if errisnot nil, the error is printed,
the program is exited, and Go’s runtime system closes any open files.

The americanise() function accepts an io.Reader and an io.Writer, not *os.Files,
but this doesn’t matter since the os.File type supports the io.ReadWriter inter-
face (which simply aggregates the io.Reader and io.Writer interfaces) and can
therefore be used wherever an io.Reader or an io.Writer is required. This is
an example of duck typing in action—the americanise() function’s parameters
are interfaces, so the function will accept any values—no matter what their
types—that satisfy the interfaces, that is, any values that have the methods the

*Go’s approach is very different from C++, Java, and Python, where exception handling is often used
for both errors and exceptions. The discussion and rationale for Go’s panic/recover mechanism is at
https://groups.google.com/group/golang-nuts/browse thread/thread/lce5cd050bb973e4?pli=1.
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interfaces specify. The americanise() function returnsnil, or an error if an error
occurred.

func filenamesFromCommandLine() (inFilename, outFilename string,
err error) {
if len(os.Args) > 1 && (0s.Args[1] == "-h" || os.Args[1] == "—-help") {
err = fmt.Errorf("usage: %s [<]infile.txt [>]outfile.txt",
filepath.Base(os.Args[0]))
return "", "", err
}
if len(os.Args) > 1 {
inFilename = 0s.Args[1]
if len(os.Args) > 2 {
outFilename = 0s.Args[2]

}

}

if inFilename !'= "" && inFilename == outFilename {
log.Fatal("won't overwrite the infile")

}

return inFilename, outFilename, nil

}

The filenamesFromCommandLine() function returns two strings and an error
value—and unlike the functions we have seen so far, here the return values are
given variable names, not just types. Return variables are set to their zero val-
ues (empty strings and nil for err in this case) when the function is entered, and
keep their zero values unless explicitly assigned to in the body of the function.
(We will say a bit more on this topic when we discuss the americanise() func-
tion, next.)

The function begins by seeing if the user has asked for usage help.* If they have,
we create a new error value using the fmt.Errorf() function with a suitable
usage string, and return immediately. As usual with Go code, the caller is
expected to check the returned error and behave accordingly (and this is exactly
what main() does). The fmt.Errorf() function is like the fmt.Printf() function we
saw earlier, except that it returns an error value containing a string using the
given format string and arguments rather than writing a string to os.Stdout.
(The errors.New() function is used to create an error given a literal string.)

If the user did not request usage information we check to see if they entered any
command-line arguments, and if they did we set the inFilename return variable
to their first command-line argument and the outFilename return variable

* The Go standard library includes a flag package for handling command-line arguments.
Third-party packages for GNU-compatible command-line handling are available from godashboard.
appspot.com/project. (Using third-party packages is covered in Chapter 9.)
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to their second command-line argument. Of course, they may have given no
command-line arguments, in which case both inFilename and outFilename remain
empty strings; or they may have entered just one, in which case inFilename will
have a filename and outFilename will be empty.

At the end we do a simple sanity check to make sure that the user doesn’t over-
write the input file with the output file, exiting if necessary—but if all is well,
we return.* Functions or methods that return one or more values must have at
least one return statement. It can be useful for clarity, and for godoc-generated
documentation, to give variable names for return types, as we have done in this
function. If a function or method has variable names as well as types listed for
itsreturn values, then a bare returnislegal (i.e.,a return statement that does not
specify any variables). In such cases, the listed variables’ values are returned.
We do not use bare returns in this book because they are considered to be poor
Go style.

Go takes a consistent approach to reading and writing data that allows us to
read and write to files, to buffers (e.g., to slices of bytes or to strings), and to
the standard input, output, and error streams—or to our own custom types—so
long as they provide the methods necessary to satisfy the reading and writing
interfaces.

For a value to be readable it must satisfy the io.Reader interface. This interface
specifies a single method with signature, Read([]byte) (int, error). The Read()
method reads data from the value it is called on and puts the data read into the
given byte slice. It returns the number of bytes read and an error value which
will be nil if no error occurred, or io.EOF (“end of file”) if no error occurred
and the end of the input was reached, or some other non-nil value if an error
occurred. Similarly, for a value to be writable it must satisfy the io.Writer
interface. This interface specifies a single method with signature, Write([]byte)
(int, error). The Write() method writes data from the given byte slice into the
value the method was called on, and returns the number of bytes written and
an error value (which will be nil if no error occurred).

The io package provides readers and writers but these are unbuffered and
operate in terms of raw bytes. The bufio package providesbuffered input/output
where the input will work on any value that satisfies the io.Reader interface (i.e.,
provides a suitable Read () method), and the output will work on any value that
satisfies the io.Writer interface (i.e., provides a suitable Write() method). The
bufio package’s readers and writers provide buffering and can work in terms of
bytes or strings, and so are ideal for reading and writing UTF-8 encoded text
files.

*In fact, the user could still overwrite the input file by using redirection—for example,
$ ./americanise infile > infile—but at least we have prevented an obvious accident.
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var britishAmerican = "british-american.txt"

func americanise(inFile io.Reader, outFile io.Writer) (err error) {

reader := bufio.NewReader(inFile)
writer := bufio.NewWriter(outFile)
defer func() {

if err == nil {

err = writer.Flush()

}

)

var replacer func(string) string ©@
if replacer, err = makeReplacerFunction(britishAmerican); err != nil {
return err
}
wordRx := regexp.MustCompile("[A-Za-z]+")
eof := false
for 'eof {
var line string @
line, err = reader.ReadString('\n")
if err == i0.EQOF {
err = nil // io.EOF isn't really an error
eof = true // this will end the loop at the next iteration
} else if err != nil {
return err // finish immediately for real errors
}
line = wordRx.ReplaceAllStringFunc(line, replacer)
if , err = writer.WriteString(line); err != nil { ©
return err
}
}
return nil

}

The americanise() function buffers the inFile reader and the outFile writer.
Then it reads lines from the buffered reader and writes each line to the buffered
writer, having replaced any British English words with their U.S. equivalents.

The function begins by creating a buffered reader and a buffered writer through
which their contents can be accessed as bytes—or more conveniently in this case,
as strings. The bufio.NewReader() construction function takes as argument any
value that satisfies the io.Reader interface (i.e., any value that has a suitable
Read() method) and returns a new buffered io.Reader that reads from the given
reader. The bufio.NewWriter() function is synonymous. Notice that the ameri-
canise() function doesn’t know or care what it is reading from or writing to—the
reader and writer could be compressed files, network connections, byte slices
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([1byte), or anything else that supports the io.Reader and io.Writer interfaces.
This way of working with interfaces is very flexible and makes it easy to com-
pose functionality in Go.

Next we create an anonymous deferred function that will flush the writer’s
buffer before the americanise() function returns control to its caller. The anony-
mous function will be called when americanise() returns normally—or abnor-
mally due to a panic. If no error has occurred and the writer’s buffer contains
unwritten bytes, the bytes will be written before americanise() returns. Since it
is possible that the flush will fail we set the err return value to the result of the
writer.Flush() call. A less defensive approach would be to have a much simpler
defer statement of defer writer.Flush() to ensure that the writer is flushed be-
fore the function returns and ignoring any error that might have occurred before
the flush—or that occurs during the flush.

Go allows the use of named return values, and we have taken advantage of this
facility here (err error), just as we did previously in the filenamesFromCommand-
Line() function. Be aware, however, that there is a subtle scoping issue we must
consider when using named return values. For example, if we have a named
return value of value, we can assign to it anywhere in the function using the as-
signment operator (=) as we'd expect. However,if we have a statement such asif
value :=...,because the if statement starts a new block, the value in the if state-
ment will be a new variable, so the if statement’s value variable will shadow the
return value variable. Intheamericanise() function,erris a named return value,
so we have made sure that we never assign to it using the short variable decla-
ration operator (:=) to avoid the risk of accidentally creating a shadow variable.
One consequence of this is that we must declare the other variables we want to
assign to at the same time, such as the replacer function (35 <, @) and the line
we read in (35 <, ®). An alternative approach is to avoid named return values
and return the required value or values explicitly, as we have done elsewhere.

One other small point to note is that we have used the blank identifier, (35 <,
®). The blank identifier serves as a placeholder for where a variable is expected
in an assignment, and discards any value it is given. The blank identifier is
not considered to be a new variable, so if used with :=, at least one other (new)
variable must be assigned to.

The Go standard library contains a powerful regular expression package
called regexp (§3.6.5, » 120). This package can be used to create pointers to
regexp.Regexp values (i.e., of type *regexp.Regexp). These values provide many
methods for searching and replacing. Here we have chosen to use the reg-
exp.Regexp.ReplaceAllStringFunc() method which given a string and a “replacer”
function with signature func(string) string, calls the replacer function for every
match, passing in the matched text, and replacing the matched text with the text
the replacer function returns.
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If we had a very small replacer function, say, one that simply uppercased the
words it matched, we could have created it as an anonymous function when we
called the replacement function. For example:

line = wordRx.ReplaceAllStringFunc(line,
func(word string) string { return strings.ToUpper(word) })

However, the americanise program’s replacer function, although only a few lines
long, requires some preparation, so we have created another function, makeRe-
placerFunction(), that given the name of a file that contains lines of original and
replacement words, returns a replacer function that will perform the appropri-
ate replacements.

If the makeReplacerFunction() returns a non-nil error, we return and the caller is
expected to check the returned error and respond appropriately (as it does).

Regular expressions can be compiled using the regexp.Compile() function which
returns a *regexp.Regexp and nil, or nil and error if the regular expression is
invalid. This is ideal for when the regular expression is read from an external
source such as a file or received from the user. Here, though, we have used the
regexp.MustCompile() function—this simply returns a *regexp.Regexp, or panics
if the regular expression, or “regexp”, is invalid. The regular expression used
in the example matches the longest possible sequence of one or more English
alphabetic characters.

With the replacer function and the regular expression in place we start an infi-
nite loop that begins by reading a line from the reader. The bufio.Reader.Read-
String() method reads (or, strictly speaking, decodes) the underlying reader’s
raw bytes as UTF-8 encoded text (which also works for 7-bit ASCII) up to and in-
cluding the specified byte (or up to the end of the file). The function conveniently
returns the text as a string, along with an error (or nil).

If the error returned by the call to the bufio.Reader.ReadString() method is not
nil, either we have reached the end of the input or we have hit a problem. At the
end of the input err will be io.EOF which is perfectly okay, so in this case we set
err tonil (since there isn’t really an error), and set eof to true to ensure that the
loop finishes at the next iteration, so we won’t attempt to read beyond the end of
the file. We don’t return immediately we get io.EOF, since it is possible that the
file’s last line doesn’t end with a newline, in which case we will have received a
line to be processed, in addition to the io.EOF error.

For each line we call the regexp.Regexp.ReplaceAllStringFunc() method, giving it
the line and the replacer function. We then try to write the (possibly modified)
line to the writer using the bufio.Writer.WriteString() method—this method ac-
cepts a string and writes it out as a sequence of UTF-8 encoded bytes, returning
the number of bytes written and an error (which will be nil if no error occurred).
We don’t care how many bytes are written so we assign the number to the blank
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identifier, . If err is not nil we return immediately, and the caller will receive
the error.

Using bufio’s reader and writer as we have done here means that we can work
with convenient high level string values, completely insulated from the raw
bytes which represent the text on disk. And, of course, thanks to our deferred
anonymous function, we know that any buffered bytes are written to the writer
when the americanise() function returns, providing that no error has occurred.

func makeReplacerFunction(file string) (func(string) string, error) {
rawBytes, err := ioutil.ReadFile(file)
if err != nil {
return nil, err
}

text := string(rawBytes)

usForBritish := make(map[string]string)
lines := strings.Split(text, "\n")
for , line := range lines {
fields := strings.Fields(line)
if len(fields) == 2 {
usForBritish[fields[0]] = fields[1]
}
}

return func(word string) string {
if usWord, found := usForBritish[word]; found {
return usWord
}
return word
}, nil
}

The makeReplacerFunction() takes the name of a file containing original and
replacement strings and returns a function that given an original string returns
its replacement, along with an error value. It expects the file to be a UTF-8
encoded text file with one whitespace-separated original and replacement word
per line.

In addition to the bufio package’s readers and writers, Go’s io/ioutil package
provides some high level convenience functions including the ioutil.ReadFile()
function used here. This function reads and returns the entire file’s contents as
raw bytes (in a []byte) and an error. As usual, if the error is not nil we immedi-
ately return it to the caller—along with a nil replacer function. If we read the
bytes okay, we convert them to a string using a Go conversion of form type(vari-
able).Converting UTF-8 bytes to a string is very cheap since Go’s strings use the
UTF-8 encoding internally. (Go’s string conversions are covered in Chapter 3.)
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The replacer function we want to create must accept a string and return a
corresponding string, so what we need is a function that uses some kind of
lookup table. Go’s built-in map collection data type is ideal for this purpose (§4.3,
» 164). A map holds key-value pairs with very fast lookup by key. So here we will
store British words as keys and their U.S. counterparts as values.

Go’s map, slice, and channel types are created using the built-in make() function.
This creates a value of the specified type and returns a reference to it. The
reference can be passed around (e.g., to other functions) and any changes made
to the referred-to value are visible to all the code that accesses it. Here we have
created an empty map called usForBritish, with string keys and string values.

With the map in place we then split the file’s text (which is in the form of a single
long string) into lines, using the strings.Split() function. This function takes a
string to split and a separator string to split on and does as many splits as pos-
sible. (If we want to limit the number of splits we can use the strings.SplitN()
function.)

The iteration over the lines uses a for loop syntax that we haven’t seen before,
this time using a range clause. This form can be conveniently used to iterate
over a map’s keys and values, over a communication channel’s elements, or—as
here—over a slice’s (or array’s) elements. When used on a slice (or array),
the slice index and the element at that index are returned on each iteration,
starting at index O (if the slice is nonempty). In this example we use the loop to
iterate over all the lines, but since we don’t care about the index of each line we
assign it to the blank identifier ( ) which discards it.

We need to split each line into two: the original string and the replacement
string. We could use the strings.Split() function but that would require us to
specify an exact separator string, say, " ", which might fail on a hand-edited file
where sometimes users accidentally put in more than one space, or sometimes
use tabs. Fortunately, Go provides the strings.Fields() function which splits
the string it is given on whitespace and is therefore much more forgiving of
human-edited text.

If the fields variable (of type []string) has exactly two elements we insert the
corresponding key—value pair into the map. Once the map is populated we are
ready to create the replacer function that we will return to the caller.

We create the replacer function as an anonymous function given as an argument
to the return statement—along with a nil error value. (Of course, we could
have been less succinct and assigned the anonymous function to a variable and
returned the variable.) The function has the exact signature required by the
regexp.Regexp.ReplaceAllStringFunc() method that it will be passed to.

Inside the anonymous replacer function all we do is look up the given word. If
we access a map element with one variable on the left-hand side, that variable
is set to the corresponding value—or to the value type’s zero value if the given
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key isn’t in the map. If the map value type’s zero value is a legitimate value,
then how can we tell if a given key is in the map? Go provides a syntax for
this case—and that is generally useful if we simply want to know whether a
particular key is in the map—which is to put two variables on the left-hand side,
the first to accept the value and the second to accept a bool indicating if the key
was found. In this example we use this second form inside an if statement that
has a simple statement (a short variable declaration), and a condition (the found
Boolean). So we retrieve the usWord (which will be an empty string if the given
word isn’t a key in the map), and a found flag of type bool. If the British word was
found we return the U.S. equivalent; otherwise we simply return the original
word unchanged.

There is a subtlety in the makeReplacerFunction() function that may not be
immediately apparent. In the anonymous function created inside it we access
the usForBritish map, yet this map was created outside the anonymous function.
This works because Go supports closures (§5.6.3, » 225). A closure is a function
that “captures” some external state—for example, the state of the function it
is created inside, or at least any part of that state that the closure accesses. So
here, the anonymous function that is created inside the makeReplacerFunction()
is a closure that has captured the usForBritish map.

Another subtlety is that the usForBritish map is a local variable and yet we will
be accessing it outside the function in which it is declared. It is perfectly fine to
return local variables in Go. Even if they are references or pointers, Go won’t
delete them while they are in use and will garbage-collect them when they are
finished with (i.e., when every variable that holds, refers, or points to them has
gone out of scope).

This section has shown some basic low-level and high-level file handling func-
tionality using os.Open(), os.Create(), and ioutil.ReadFile(). In Chapter 8
there is much more file handling coverage, including the writing and reading
of text, binary, JSON, and XML files. Go’s built-in collection types—slices and
maps—Ilargely obviate the need for custom collection types while providing ex-
tremely good performance and great convenience. Go’s collection types are cov-
ered in Chapter 4. Go’s treatment of functions as first-class values in their own
right and its suppport for closures makes it possible to use some advanced and
very useful programming idioms. And Go’s defer statement makes it straight-
forward to avoid resource leakage.

1.7. Polar to Cartesian—Concurrency

One key aspect of the Go language is its ability to take advantage of modern
computers with multiple processors and multiple cores, and to do so without bur-
dening programmers with lots of bookkeeping. Many concurrent Go programs
can be written without any explicit locking at all (although Go does have locking
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primitives for when they’re needed in lower-level code, as we will see in Chap-
ter 7).

Two features make concurrent programming in Go a pleasure. First,goroutines
(in effect very lightweight threads/coroutines) can easily be created at will with-
out the need to subclass some “thread” class (which isn’t possible in Go anyway).
Second, channels provide type-safe one-way or two-way communication with gor-
outines and which can be used to synchronize goroutines.

The Go way to do concurrency is to communicate data, not to share data. This
makes it much easier to write concurrent programs than using the traditional
threads and locks approach, since with no shared data we can’t get race condi-
tions (such as deadlocks), and we don’t have to remember to lock or unlock since
there is no shared data to protect.

In this section we will look at the fifth and last of the chapter’s “overview”
examples. This section’s example program uses two communication channels
and does its processing in a separate Go routine. For such a small program this
is complete overkill, but the point is to illustrate a basic use of these Go features
in as clear and short a way as possible. More realistic concurrency examples
that show many of the different techniques that can be used with Go’s channels
and goroutines are presented in Chapter 7.

The program we will review is called polar2cartesian;it is an interactive console
program that prompts the user to enter two whitespace-separated numbers—a
radius and an angle—which the program then uses to compute the equivalent
cartesian coordinates. In addition toillustrating one particular approach to con-
currency, it also shows some simple structs and how to determine if the program
isrunning on a Unix-like system or on Windows for when the difference matters.
Here is an example of the program running in a Linux console:

$ ./polar2cartesian

Enter a radius and an angle (in degrees), e.g., 12.5 90, or Ctrl+D to quit.
Radius and angle: 5 30.5

Polar radius=5.00 6=30.50° - Cartesian x=4.31 y=2.54

Radius and angle: 5 -30.25

Polar radius=5.00 6=-30.25° - Cartesian x=4.32 y=-2.52

Radius and angle: 1.0 90

Polar radius=1.00 ©6=90.00° - Cartesian x=-0.00 y=1.00

Radius and angle: “D

$

The program is in file polar2cartesian/polar2cartesian.go, and we will review
it top-down, starting with the imports, then the structs it uses, then its init()
function, then its main() function, and then the functions called by main(), and so
on.
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import (
"bufio"
“fmt"
"math"
"0s
"runtime"

)

The polar2cartesian program imports several packages, some of which have
been mentioned in earlier sections, so we will only mention the new ones here.
The math package provides mathematical functions for operating on floating-
point numbers (§2.3.2, » 64) and the runtime package provides functions that
access the program’s runtime properties, such as which platform the program is
running on.

type polar struct {
radius float64

6 float64

}

type cartesian struct {
x  float64
y float64

}

In Goastruct isa type that holds (aggregates or embeds) one or more data fields.
These fields can be built-in types as here (float64), or structs, or interfaces, or
any combination of these. (An interface data field is in effect a pointer to an
item—of any kind—that satisfies the interface, i.e., that has the methods the
interface specifies.)

It seems natural to use the Greek lowercase letter theta (0) to represent the
polar coordinate’s angle, and thanks to Go’s use of UTF-8 we are free to do so.
This is because Go allows us to use any Unicode letters in our identifiers, not
just English letters.

Although the two structs happen to have the same data field types they are dis-
tinct types and no automatic conversion between them is possible. This supports
defensive programming; after all, it wouldn’t make sense to simply substitute a
cartesian’s positional coordinates for polar coordinates. In some cases such con-
versions do make sense, in which case we can easily create a conversion method
(i.e., a method of one type that returned a value of another type) that made use
of Go’s composite literal syntax to create a value of the target type populated by
the fields from the source type. (Numeric data type conversions are covered in
Chapter 2; string conversions are covered in Chapter 3.)
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var prompt = "Enter a radius and an angle (in degrees), e.g., 12.5 90, " +
"or %s to quit."

func init() {
if runtime.GO0S == "windows" {
prompt = fmt.Sprintf(prompt, "Ctrl+Z, Enter")
} else { // Unix-like
prompt = fmt.Sprintf(prompt, "Ctrl+D")
}
}

If a package has one or more init() functions they are automatically executed
beforethe main package’smain() functionis called. (In fact, init() functions must
never be called explicitly.) So when our polar2cartesian program is invoked
this init() function is the first function that is called. We use init() to set the
prompt to account for platform differences in how end of file is signified—for
example, on Windows end of file is given by pressing Ctrl+Z then Enter. Go’s run-
time package provides the G00S (Go Operating System) constant which is a string
identifying the operating system the program is running on. Typical values are
darwin (Mac OS X), freebsd, linux, and windows.

Before diving into the main() function and the rest of the program we will
briefly discuss channels and show some toy examples before seeing them in
proper use.

Channels are modeled on Unix pipes and provide two-way (or at our option,
one-way) communication of data items. Channels behave like FIFO (first in,
first out) queues, hence they preserve the order of the items that are sent into
them. Items cannot be dropped from a channel, but we are free to ignore any or
all of the items we receive. Let’s look at a very simple example. First we will
make a channel:

messages := make(chan string, 10)

Channels are created with the make() function (Chapter 7) and are declared us-
ing the syntax, chan Type. Here we have created the messages channel to send and
receive strings. The second argument to make () is the buffer size (which defaults
to 0); here we have made it big enough to accept ten strings. If a channel’s buffer
is filled it blocks until at least one item is received from it. This means that any
number of items can pass through a channel, providing the items are retrieved
to make room for subsequent items. A channel with a buffer size of 0 can only
send an item if the other end is waiting for an item. (It is also possible to get
the effect of nonblocking channels using Go’s select statement, as we will see in
Chapter 7.)

Now we will send a couple of strings into the channel:



44 Chapter 1. An Overview in Five Examples

messages <- "lLeader"
messages <- "Follower"

When the <- communication operator is used as a binary operator its left-hand
operand must be a channel and its right-hand operand must be a value to send
to the channel of the type the channel was declared with. Here, we first send the
string Leader to the messages channel, and then we send the string Follower.

messagel := <-messages
message2 := <-messages

When the <- communication operator is used as a unary operator with just a
right-hand operand (which must be a channel), it acts as a receiver, blocking
until it has a value to return. Here, we retrieve two messages from the messages
channel. The messagel variable is assigned the string Leader and the message2
variable is assigned the string Follower; both variables are of type string.

Normally channels are created to provide communication between goroutines.
Channel sends and receives don’t need locks, and the channel blocking behavior
can be used to achieve synchronization.

Now that we have seen some channel basics, let’s see channels—and goroutines
—in practical use.

func main() {
questions := make(chan polar)
defer close(questions)
answers := createSolver(questions)
defer close(answers)
interact(questions, answers)

}

Once any init() functions have returned, Go’s runtime system then calls the
main package’s main() function.

Here, the main() function begins by creating a channel (of type chan polar) for
passing polar structs, and assigns it to the questions variable. Once the channel
has been created we use a defer statement to call the built-in close() function
(> 187) to ensure that it is closed when it is no longer needed. Next we call the
createSolver() function, passing it the questions channel and receiving from it
an answers channel (of type chan cartesian). We use another defer statement to
ensure that the answers channel is closed when it is finished with. And finally,
we call the interact() function with the two channels, and in which the user
interaction takes place.
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func createSolver(questions chan polar) chan cartesian {
answers := make(chan cartesian)
go func() {
for {

polarCoord := <-questions @
6 := polarCoord.0 * math.Pi / 180.0 // degrees to radians
X polarCoord.radius * math.Cos(6)
y := polarCoord.radius * math.Sin(6)
answers <- cartesian{x, y} @

}
H)

return answers

}

The createSolver() function begins by creating an answers channel to which it
will send the answers (i.e., cartesian coordinates) to the questions (i.e., polar
coordinates) that it receives from the questions channel.

After creating the channel, the function then has a go statement. A go statement
is given a function call (syntactically just like a defer statement), which is exe-
cuted in a separate asynchronous goroutine. This means that the flow of control
in the current function (i.e., in the main goroutine) continues immediately from
the following statement. In this case the go statement is followed by a return
statement that returns the answers channel to the caller. As we noted earlier,itis
perfectly safe and good practice in Go to return local variables, since Go handles
the chore of memory management for us.

In this case we have (created and) called an anonymous function in the go state-
ment. The function has an infinite loop that waits (blocking its own goroutine,
but not any other goroutines, and not the function in which the goroutine was
started), until it receives a question—in this case a polar struct on the questions
channel. When a polar coordinate arrives the anonymous function computes the
corresponding cartesian coordinate using some simple math (and using the stan-
dard library’s math package), and then sends the answer as a cartesian struct
(created using Go’s composite literal syntax), to the answers channel.

In @ the <- operator is used as a unary operator, retrieving a polar coordinate
from the questions channel. And in @ the <- operator is used as a binary opera-
tor;its left-hand operand being the answers channel to send to, and its right-hand
operand being the cartesian to send.

Once the call to createSolver() returns we have reached the point where we have
two communication channels set up and where a separate goroutine is waiting
for polar coordinates to be sent on the questions channel—and without any other
goroutine, including the one executing main(), being blocked.
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const result = "Polar radius=%.02f 6=%.02f° - Cartesian x=%.02f y=%.02f\n"

func interact(questions chan polar, answers chan cartesian) {
reader := bufio.NewReader(os.Stdin)
fmt.Printin(prompt)
for {
fmt.Printf("Radius and angle: ")
line, err := reader.ReadString('\n")
if err '= nil {
break
}
var radius, 6 float64
if , err := fmt.Sscanf(line, "%f %f", &radius, &B8); err != nil {
fmt.Fprintln(os.Stderr, "invalid input")
continue
}
questions <- polar{radius, 6}
coord := <-answers
fmt.Printf(result, radius, O, coord.x, coord.y)
}
fmt.Println()
}

This function is called with both channels passed as parameters. It begins by
creating a buffered reader for 0s.5tdin since we want to interact with the user in
the console. It then prints the prompt that tells the user what to enter and how
to quit. We could have made the program terminate if the user simply pressed
Enter (i.e., didn’t type in any numbers), rather than asking them to enter end of
file. However, by requiring the use of end of file we have made polar2cartesian
more flexible, since it is also able to read its input from an arbitrary external file
using file redirection (providing only that the file has two whitespace-separated
numbers per line).

The function then starts an infinite loop which begins by prompting the user to
enter a polar coordinate (a radius and an angle). After asking for the user’s input
the function waits for the user to type some text and press Enter, or to press Ctrl+D
(or Ctrl+Z, Enter on Windows) to signify that they have finished. We don’t bother
checking the error value;if it isn’t nil we break out of the loop and return to the
caller (main()), which in turn will return (and call its deferred statements to close
the communication channels).

We create two float64s to hold the numbers the user has entered and then use
Go’s fmt.Sscanf () function to parse the line. This function takes a string to parse,
a format—in this case two whitespace-separated floating-point numbers—and
one or more pointers to variables to populate. (The & address of operator is used
to get a pointer to a value; see §4.1, » 140.) The function returns the number of
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items it successfully parsed and an error (or nil). In the case of an error, we print
an error message to 0s.Stderr—this is to make the error message visible on the
console even if the program’s os.Stdout is redirected to a file. Go’s powerful and
flexible scan functions are shown in use in Chapter 8 (§8.1.3.2,>» 380), and listed
in Table 8.2 > 383).

If valid numbers were input and sent to the questions channel (in a polar struct),
we block the main goroutine waiting for a response on the answers channel. The
additional goroutine created in the createSolver() functionisitself blocked wait-
ing for a polar on the questions channel, so when we send the polar, the addi-
tional goroutine performs the computation, sends the resultant cartesian to the
answers channel, and then waits (blocking only itself) for another question to
arrive. Once the cartesian answer is received in the interact() function on the
answers channel, interact() is no longer blocked. At this point we print the re-
sult string using the fmt.Printf() function, and passing the polar and cartesian
values as the arguments that the result string’s % placeholders are expecting.
The relationship between the goroutines and the channels is illustrated in Fig-
ure 1.1.

Main goroutine
init() Questions Solver goroutine
main()
Answers func() // anonymous
createSolver()
interact()

Figure 1.1 Two communicating goroutines

The interact() function’s for loop is an infinite loop, so as soon as a result is
printed the user is once again asked to enter a radius and angle, with the loop
being broken out of only if the reader reads end of file—either interactively from
the user or because the end of a redirected input file has been reached.

The calculations in polar2cartesian are very lightweight, so there was no real
need to do them in a separate goroutine. However, a similar program that
needed to do multiple independent heavyweight calculations as the result of
each input might well benefit from using the approach shown here, for example,
with one goroutine per calculation. We will see more realistic use cases for
channels and goroutines in Chapter 7.

We have now completed our overview of the Go language as illustrated by the
five example programs reviewed in this chapter. Naturally, Go has much more
to offer than there has been space to show here, as we will see in the subsequent
chapters, each of which focuses on a specific aspect of the language and any
relevant packages from the standard library. This chapter concludes with a
small exercise, which despite its size, requires some thought and care.
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1.8. Exercise

Copy the bigdigits directory to, say, my bigdigits, and modify my bigdigits/big-
digits.go to produce a version of the bigdigits program (§1.4, 16 <) that can
optionally output the number with an overbar and underbar of “x”s, and with
improved command-line argument handling.

The original program output its usage message if no number was given; change
this so that the usage message is also output if the user gives an argument of -h
or —help. For example:

$ ./bigdigits —help
usage: bigdigits [-b|--bar] <whole-number>
-b ——bar draw an underbar and an overbar

If the —-bar (or -b) option is not present the program should have the same
behavior as before. Here is an example of the expected output if the option is
present:

$ ./bigdigits --bar 8467243

oK oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok >k >k ok sk ok ok ok ok ok ok >k >k ok ok ok k ok ok k &

888 4 666 77777 222 4 333
8 8 44 6 7 2 2 44 3 3
8 8 44 6 7 2 44 3

888 4 4 6666 7 2 4 4 33
8 8 444444 6 6 7 2 444444 3
8 8 4 6 6 7 2 4 3 3

888 4 666 7 22222 4 333

3Kk 3K 5k 3K >k 3k K ok K ok K >k 3k >k ok K ok K >k 3k >k ok 5K ok K >k 3k >k ok Kok K ok 5k Kok Kok Kk k Kok Kok k ok k

The solution requires more elaborate command-line processing than the version
shown in the text, although the code producing the output only needs a small
change to output the overbar before the first row and the underbar after the
last row. Overall, the solution needs about 20 extra lines of code—the solution’s
main() function is twice as long as the original (~40 vs. ~20 lines), mostly due to
the code needed to handle the command line. A solution is provided in the file
bigdigits ans/bigdigits.go.

Hints: The solution also has a subtle difference in the way it builds up each row’s
line to prevent the bars extending too far. Also, the solution imports the strings
package and uses the strings.Repeat(string, int) function. This function
returns a string that contains the string it is given asits first argument repeated
by the number of times of the int given as its second argument. Why not look
this function up either locally (see the sidebar “The Go Documentation”, 8 <),
or at golang.org/pkg/strings, and start to become familiar with the Go standard
library’s documentation.
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It would be much easier to handle command-line arguments using a package de-
signed for the purpose. Go’s standard library includes a rather basic command
line parsing package, flag, that supports X11-style options (e.g., -option). In ad-
dition, several option parsers that support GNU-style short and long options
(e.g., -0 and —-option) are available from godashboard.appspot.com/project.
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This is the first of four chapters on procedural programming that lay down
the foundations for Go programming—whether procedural, object-oriented,
concurrent, or any combination of these approaches.

This chapter covers Go’s built-in Boolean type and all of Go’s built-in numeric
types, and briefly introduces two of the numeric types from Go’s standard
library. Apart from the need to explicitly convert between different types of
numbers and the convenience of having a built-in complex type, programmers
coming from C, C++, and Java should find few surprises in this chapter.

This chapter’s first section covers some of the language’s basics, such as how
comments are written, Go’s keywords and operators, what constitutes a valid
identifier, and so on. Once these preliminaries have been covered, there are
sections on Booleans, integers, and floating-point numbers, the latter including
coverage of complex numbers.

2.1. Preliminaries

Go supports two kinds of comments, both adopted from C++. Line comments
begin with // and end at the newline; these are treated simply as a newline.
General comments begin with /* and end with */ and may span multiple lines.
When a general comment is all on one line (e.g., /* inline comment */),it is treated
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as a space, and when a general comment spans one or more lines it it treated as
a newline. (Newlines are significant in Go, as we will see in Chapter 5.)

A Go identifier is a nonempty sequence of letters and digits where the first
character must be a letter, and which is not the name of a keyword. A letter is
the underscore, , or any character that is in the Unicode categories, “Lu” (letter,
uppercase), “L1” (letter, lowercase), “Lt” (letter, titlecase), “LLm” (letter, modifier),
or “Lo” (letter, other); this includes all the English alphabetic characters (A-Z
and a—z). A digit is any character in the Unicode category “Nd” (number, decimal
digit); this includes the Arabic digits (0-9). The compiler will prevent the use of
an identifier that has the same name as a keyword; see Table 2.1.

Table 2.1 Go’s Keywords

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

Go has many predefined identifiers; it is possible—but rarely wise—to create an
identifier with the same name as a predefined identifier; see Table 2.2.

Table 2.2 Go’s Predefined Identifiers

append copy int8 nil true
bool delete intl6 panic uint
byte error int32 print uint8
cap false int64 println uintlé
close float32 iota real uint32
complex float64 len recover uint64
complex64 imag make rune uintptr
complex128 int new string

Identifiers are case-sensitive, so for example, LINECOUNT, Linecount, LineCount,
lineCount, and linecount are five different identifiers. Identifiers that begin with
a capital letter, that is, with a character in Unicode category “Lu” (including
A-7), are considered to be public—exported in Go terminology—while all others
are considered to be private—unexported in Go terminology. (This rule does
not apply to package names which are conventionally all lowercase.) We will
see this distinction in action when we discuss object-oriented programming in
Chapter 6, and packages in Chapter 9.

The blank identifier, , serves as a placeholder for where a variable is expected
in an assignment, and discards any value it is given. The blank identifier is not
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considered to be a new variable, so if it is used with the := operator, at least one
other (new) variable must be assigned to. It is legitimate to discard some or all
of a function’s return values by assigning them to the blank identifier. However,
if no return values are wanted it is more conventional to simply ignore them.
Here are some examples:

count, err = fmt.Println(x) // get number of bytes printed and error

count, = fmt.Println(x) // get number of bytes printed; discard error
_, err = fmt.Println(x) // discard number of bytes printed; get error
fmt.Println(x) // 1ignore return values

It is not uncommon to ignore the return values when printing to the console,
but the error value should always be checked when printing to files, network
connections, and so on—for example, using fmt.Fprint() and similar functions.
(Go’s print functions are fully covered later; §3.5, » 93.)

2.1.1. Constants and Variables

Constants are declared using the const keyword; variables can be declared using
the var keyword, or using the short variable declaration syntax. Go can infer
the type of the declared type, although it is legal to specify it if we wish to or
need to—for example, to specify a type that is different from the type Go would
normally infer. Here are some example declarations:

const limit = 512 // constant; type-compatible with any number
const top uintle = 1421 // constant; type: uintl6

start := -19 // variable; inferred type: int

end := int64(9876543210) // variable; type: int64

var i int // variable; value 0; type: int

var debug = false // variable; inferred type: bool
checkResults := true // variable; inferred type: bool

stepSize := 1.5 // variable; inferred type: float64

acronym := "F0SS" // variable; inferred type: string

For integer literals Go infers type int, for floating-point literals Go infers type
float64, and for complex literals Go infers type complex128 (the numbers in their
names refer to how many bits they occupy). The normal practice is to leave types
unspecified unless we want to use a specific type that Go won’t infer; we will
discuss this further in §2.3, » 57. Typed numeric constants (e.g., top) can only
be used in expressions with other numbers of the same type (unless converted).
Untyped numeric constants can be used in expressions with numbers of any
built-in type, (e.g., limit can be used in an expression with integers or in one
with floating-point numbers).

The variable i was not given any explicit value. This is perfectly safe in Go since
Go always assigns variables their type’s zero value if no other value is specified.
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This means that every numeric variable is guaranteed to be zero and every
string to be empty—unless we specify otherwise. This ensures that Go programs
don’t suffer from the problems of uninitialized garbage values that afflict some
other languages.

2.1.1.1. Enumerations

Rather than repeat the const keyword when we want to set multiple constants,
we can group together several constant declarations using the const keyword
just once. (We used the same grouping syntax when importing packages in
Chapter 1; the syntax can also be used to group variables declared with var.) For
those cases where we just want constants to have distinct values and don’t really
care what those values are, we can use Go’s somewhat bare-bones enumeration
support.

const Cyan = 0 const ( const (

const Magenta = 1 Cyan =0 Cyan = iota // 0

const Yellow = 2 Magenta = 1 Magenta /] 1
Yellow = 2 Yellow /] 2

) )

These three code snippets all achieve exactly the same thing. The way a group
of consts works is that the first one is set to its zero value unless explicitly set
(either to a value or to iota), and the second and subsequent ones are set to their
predecessor’s value—or to iota if their predecessor’s value is iota. And each
subsequent iota value is one more than the previous one.

More formally, the iota predefined identifier represents successive untyped
integer constants. Its value is reset to zero whenever the keyword const occurs
(so every time a new const group is defined), and increments by one for each
constant declaration. So in the right-hand code snippet all the constants are set
to iota (implicitly for the Magenta and Yellow ones). And since Cyan immediately
follows a const, iota is reset to 0 which become’s Cyan’s value; Magenta’s value is
also iota but at this point iota’s value is 1. Similarly, Yellow’s value is iota whose
value is now 2. And if we added Black at the end (but within the const group) it
would be implicitly set to iota whose value at that point would be 3.

On the other hand, if the right-hand code snippet didn’ have iota, Cyan would
be set to 0 and Magenta would be set to Cyan’s value and Yellow would be set to
Magenta’s value—so they would all end up being set to 0. Similarly, if Cyan was set
to 9, then they would all be set to 9; or if Magenta was set to 5, Cyan would be set
to O (first in the group and not assigned an explicit value or iota), Magenta would
be 5 (explicitly set), and Yellow would be 5 (the previous constant’s value).

It is also possible to use iota with floating-point numbers, simple expressions,
and custom types.
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type BitFlag int

const (
Active BitFlag = 1 << iota /] 1<<0==1
Send // Implicitly BitFlag = 1 << iota // 1 <<1 ==
Receive // Implicitly BitFlag = 1 << iota // 1 << 2 ==

)
flag := Active | Send

In this snippet we have created three bit flags of custom type BitFlag and then
set variable flag (of type BitFlag) to the bitwise or of two of them (so flag has
value 3; Go’s bitwise flags are shown in Table 2.6, » 60). We could have omitted
the custom type in which case Go would have made the constants untyped
integers and inferred flag’s type as int. Variables of type BitFlag can have any
int value; nonetheless BitFlag is a distinct type so can only be used in operations
with ints if converted to an int (or if the ints are converted to BitFlags).

The BitFlag type is useful as it stands, but it isn’t very convenient for debugging.
If we were to print flag we would just get 3 with no indication of what that
means. Go makes it really easy to control how values of custom types are print-
ed, because the fmt package’s print functions will use a type’s String() method
if it has one. So to make our BitFlag type print in a more informative way, we
can simply add a suitable String() method toit. (Custom types and methods are
covered fully in Chapter 6.)

func (flag BitFlag) String() string {
var flags []string
if flag&Active == Active {
flags = append(flags, "Active")
}
if flag&Send == Send {
flags = append(flags, "Send")
}
if flag&Receive == Receive {
flags = append(flags, "Receive")
}
if len(flags) > 0 { // int(flag) is vital to avoid infinite recursion!
return fmt.Sprintf("%d(%s)", int(flag), strings.Join(flags, "|"))
}
return "0()"

}

This method builds up a (possibly empty) slice of strings for those bit fields that
are set and then prints the bit field’s value as a decimal int and with the strings
toindicate its value. (We could easily have printed the value as a binary number
by replacing the %d format specifier with %b.) As the comment notes, it is essen-
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tial that we convert the flag (of type BitFlag) to its underlying int type when
passing it to the fmt.Sprintf() function, otherwise the BitFlag.String() method
will be called recursively on the flag which will take us into an infinite recursion.
(The built-in append() function is covered in §4.2.3, » 156; the fmt.Sprintf() and
strings.Join() functions are covered in Chapter 3.)

Println(BitFlag(0), Active, Send, flag, Receive, flag|Receive)

0() 1(Active) 2(Send) 3(Active|Send) 4(Receive) 7(Active|Send|Receive)

This snippet shows how BitFlags with the String() method in place look when
printed—clearly, this is much more useful for debugging than bare integers.

It is, of course, possible to create a custom type that represents a restricted range
of integers, and to create a more elaborate custom enumeration type; we cover
custom types more fully in Chapter 6. Go’s minimalist approach to enumerations
is typical of the Go philosophy: Go aims to provide everything that programmers
need—including many powerful and convenient features—while keeping the
language as small, consistent, and fast (to build and run) as possible.

2.2. Boolean Values and Expressions

Go provides two built-in Boolean values, true and false, both of type bool. Go
supports the standard logical and comparison operators, all of which produce a
bool result; they are shown in Table 2.3.

Boolean values and expressions are used in if statements (§5.2.1, » 192), in the
conditions of for statements (§5.3, » 203), and sometimes in the conditions of
switch statements’ case clauses (§5.2.2, » 195), as we will see in Chapter 5.

The binary logical operators (| | and &&) use short-circuit logic. This means that
if we have b1 || b2 and expression bl evaluates to true, the result must be true
no matter what b2 is, so true is returned and b2 is not evaluated. Similarly, if we
have b1 && b2 and expression bl evaluates to false, the result must be false, so
false is returned and b2 is not evaluated.

Go is strict about the values that can be compared using the comparison oper-
ators (<, <=, ==, !=, >=, >). The two values must be of the same type, or—if they
are interfaces—they must implement the same interface type. If one value is
a constant then it must be of a type that is compatible with the other’s type.
This means that an untyped numeric constant can be compared with another
value of any numeric type, but numbers of different types—and that are not
constants—cannot be compared unless one of them is explicitly converted to
be of the same type as the other. (Numeric conversions are discussed in §2.3,
» 57.)
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Table 2.3 Boolean and Comparison Operators

Syntax Description/result

'b Logical NoT operator; false if Boolean expression b is true

a || b Short-circuit logical or operator; true if either Boolean expression a
or b is true

& b Short-circuit logical AND operator; true if both Boolean expressions a
and b are true

<y trueif expression x is less than expression y

QU

<=y true if expression x is less than or equal to expression y
== true if expression x is equal to expression y
true if expression x is not equal to expression y

>= y true if expression x is greater than or equal to expression y

X ox X X x X
I
<

>y trueif expression x is greater than expression y

The == and != operators can be applied to operands of any comparable types, in-
cluding arrays and structs whose items or fields are comparable using == and !=.
These operators cannot be used to compare slices, although such a comparison
can be done using the Go standard library’s reflect.DeepEqual() function. The
== and != operators can be used to compare two pointers or two interfaces—or to
compare a pointer or interface or reference (e.g., to a channel, map, or slice) with
nil. The other comparison operators (<, <=, >=, >) may be applied only to numbers
and strings. (Since Go—like C and Java—doesn’t support operator overloading,
for our own custom types we can implement our own comparison methods or
functions if needed, such as Less() or Equal(), as we will see in Chapter 6.)

2.3. Numeric Types

Go provides a wide range of built-in numeric types, and the standard library
adds integers of type big.Int and rationals of type big.Rat which are of un-
bounded size (i.e., limited only by the machine’s memory). Every numeric type
is distinct: This means that we cannot use binary arithmetic operations or com-
parisons (e.g., + or <) on numeric values of different types (e.g., of type int32 and
type int). Untyped numeric constants are compatible with any (built-in) typed
number they are in an expression with, so we can add or compare an untyped nu-
meric constant with another number, no matter what the other number’s (built-
in) type.

If we need to perform arithmetic or comparisons on typed numbers of different
types we must perform conversions—usually to the biggest type to avoid loss of
accuracy. Conversions take the form type(value) and where valid (e.g., from one
type of number to another) they always succeed—even if this results in data
loss. Here are some examples:



58 Chapter 2. Booleans and Numbers

const factor = 3 // factor is compatible with any numeric type

i := 20000 // 1 1s of type int by inference

i *= factor

j = intl6(20) // j is of type intl6; same as: var j intl6 = 20

i 4= int(j) // Types must match so conversion is required

k := uint8(0) // Same as: var k uint8

k = uint8(1) // Succeeds, but k's value is truncated to 8 bits X

fmt.Println(i, j, k) // Prints: 60020 20 116

If we want to perform safe downsizing conversions we can always create
suitable functions. For example:

func Uint8FromInt(x int) (uint8, error) {
if 0 <= x && x <= math.MaxUint8 {
return uint8(x), nil
}

return 0, fmt.Errorf("%d is out of the uint8 range", x)

}

This function accepts an int argument and returns a uint8 and nilif the int isin
range, or 0 and an error otherwise. The math.MaxUint8 constant is from the math
package which also has similar constants for Go’s other built-in numeric types.
(Of course, there are no minimum constants for the unsigned types since they
all share a minimum of 0.) The fmt.Errorf() function returns an error based on
the format string and value or values it is given. (String formatting is covered
in §3.5,>» 93.)

Numbers of the same type can be compared using the comparison operators (see
Table 2.3, 57 <). Similarly, Go’s arithmetic operators can be applied to numbers;
these are shown in Table 2.4 (» 59) applicable to all built-in numbers, and in
Table 2.6 > 60) applicable only to integers.

Constant expressions are evaluated at compile time; they may use any of the
arithmetic, Boolean, and comparison operators. For example:

const (
efri int64 = 10000000000 // type: int64
hlutfollum =16.0 / 9.0 // type: float64
melikvarda = complex (-2, 3.5) * hlutféllum // type: complex128
erGjaldgengur = 0.0 <= hlutfollum && hlutféllum < 2.0 // type: bool

)

The example uses Icelandic identifiers as a reminder that Go fully supports
native language identifiers. (We will discuss complex() shortly; §2.3.2.1, » 70.)
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Table 2.4 Arithmetic Operators Applicable to All Built-In Numbers
Syntax Description/result
+X X
-X The negation of x
X++ Increments x by the untyped constant 1
X—- Decrements x by the untyped constant 1
+= y Increments x by y
-= ¥y Decrements x by y
*= y  Sets x to x multiplied by y

/=y Sets x to x divided by y; if the numbers are integers any remainder is
discarded; division by zero causes a runtime panic*

+y The sum of x and y
- ¥y The result of subtracting y from x

* y  The result of multiplying x by y

x X X X

/ y  Theresult of dividing x by y; if the numbers are integers any remain-
der is discarded; division by zero causes a runtime panic*

Although Go has sensible rules of precedence (unlike, say, C and C++), we
recommend using parentheses to make intentions clear. Using parentheses is
particularly recommended for programmers who use multiple languages so as
to avoid subtle mistakes.

2.3.1. Integer Types

Go provides 11 separate integer types, five signed and five unsigned, plus an in-
teger type for storing pointers—their names and values are shown in Table 2.5
(> 60). In addition, Go allows the use of byte as a synonym for the unsigned
uint8 type, and encourages the use of rune as a synonym for the int32 type when
working with individual characters (i.e., Unicode code points). For most process-
ing purposes the only integer type that we need is int. This is suitable for loop
counters, array and slice indexes, and all general-purpose integer arithmetic; it
is also normally the integer type that offers the fastest processing speeds. At the
time of this writing, the int type is represented by a signed 32-bit integer (even
on 64-bit platforms), but is expected to change to 64-bit in a future Go version.

The other integer types that Go provides are needed when it comes to reading
and writing integers outside the program—for example, from and to files or
network connections. In such cases it is essential to know exactly how many
bits must be read or written so that integers can be handled without corruption.

* A panic is an exception; see Chapter 1 (32 <) and §5.5, » 212.
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Table 2.5 Go’s Integer Types and Ranges
Type Range
byte Synonym for uint8

int The int32 or int64 range depending on the implementation
int8 [-128, 127]

int16 [-32768, 32767]

int32 [-2147483648,2147483647]

int64 [-9223372036 854 775808,9223 372036 854 775 807]
rune Synonym for int32

uint The uint32 or uint64 range depending on the implementation
uint8 [0, 255]

uintl6 [0,65535]

uint32 [0,4 294967 295]

uint64 [0,18446744073709551615]

uintptr An unsigned integer capable of storing a pointer value (advanced)

Table 2.6 Arithmetic Operators Applicable Only to Built-In Integer Types
Syntax  Description/result
X The bitwise complement of x

X %=y Setsx to be the remainder of dividing x by y; division by zero causes
a runtime panic

y  Sets x to the bitwise aND of x and y
=y Sets x to the bitwise or of x and y
y

Sets x to the bitwise X0R of x and y

X
X

X

x &=y Sets x to the bitwise clear (AND NOT) of x and y

x >>= u Sets x to the result of right-shifting itself by unsigned int v shifts
x <<= u Sets x to the result of left-shifting itself by unsigned int u shifts
X

%y  Theremainder of dividing x by y; division by zero causes a runtime
panic

&y The bitwise AND of x and y

| v  The bitwise or of x and y

~y  The bitwise xor of x and y

& y  The bitwise clear (anDp NoT) of x and y

<< U Theresult of left-shifting x by unsigned int v shifts

x X X X X X

>> U The result of right-shifting x by unsigned int v shifts
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A common practice is to store integers in memory using the int type, and to
convert to or from one of the explicitly signed and sized integer types when
writing or reading integers. The byte (uint8) type is used for reading and writing
raw bytes—for example, when handling UTF-8 encoded text. We saw the basics
of reading and writing UTF-8 encoded text in the previous chapter’s americanise
example (29 «), and will see how to read and write built-in and custom data in
Chapter 8.

Go integers support all the arithmetic operations listed in Table 2.4 (59 <),
and in addition they support all the arithmetic and bitwise operations listed in
Table 2.6 (60 <). All of these operations have the expected standard behaviors,
so they are not discussed further, especially since we will see plenty of examples
throughout the book.

It is always safe to convert an integer of a smaller type to one of a larger type
(e.g.,from an int16 to an int32); but downsizing an integer that is too big for the
target type or converting a negative integer to an unsigned integer will silent-
ly result in a truncated or otherwise unexpected value. In such cases it is best
to use a custom downsizing function such as the one shown earlier (58 «). Of
course, when attempting to downsize a literal (e.g., int8(200)), the compiler will
detect the problem and report an overflow error. Integers can also be converted
to floating-point numbers using the standard Go syntax (e.g., float64 (integer)).

Go’s support for 64-bit integers makes it realistically possible to use scaled
integers for precise calculations in some contexts. For example, computing the
finances for a business using int64s to represent millionths of a cent allows for
calculations in the range of billions of dollars with sufficient accuracy for most
purposes—especially if we are careful about divisions. And if we need to do
financial calculations with perfect accuracy and avoid rounding errors we can
use the big.Rat type.

2.3.1.1. Big Integers

In some situations we need to perform perfectly accurate computations with
whole numbers whose range exceeds even that of int64s and uint64s. In such
cases we cannot use floating-point numbers because they are represented by ap-
proximations. Fortunately, Go’s standard library provides two unlimited accura-
cy integer types: big. Int for integers and big.Rat for rationals (i.e., for numbers
than can be represented as fractions such as % and 1.1496, but not irrationalslike
e or 7). These integer types can hold an arbitrary number of digits—providing
only that the machine has sufficient memory—but are potentially a lot slower
to process than built-in integers.

Since Go—like C and Java—does not support operator overloading, the methods
provided for big.Ints and big.Rats have names—for example, Add() and Mul().In
most cases the methods modify their receiver (i.e., the big integer they are called
on), and also return their receiver as their result to support the chaining of



62 Chapter 2. Booleans and Numbers

operations. We won’t list all the functions and methods provided by the math/big
package since they can easily be looked up in the documentation and may have
been added to since this was written; however, we will look at a representative
example to get a flavor of how big.Ints are used.

Using Go’s float64 type allows us to accurately compute to about 15 decimal
digits—which is more than enough for most situations. However, if we want to
compute to a large number of decimal places, say, tens or hundreds of places, as
we might want to when computing 1, no built-in type is sufficient.

In 1706 John Machin developed a formula for calculating ® to an arbitrary
number of decimal places, and we can adapt this formula in conjunction with
the Go standard library’s big. Ints to compute 1t to any number of decimal places.
The pure formula, and the arccot() function it relies on, are shown in Figure 2.1.
(No understanding of Machin’s formula is required to understand the use of the
big.Int package introduced here.) Our implementation of the arccot() function
accepts an additional argument to limit the precision of the calculation so that
we don’t go beyond the number of digits required.
T =4 x (4 x arccot(5) — arccot(239)) arccot(x) = 1_1 + A _1 + -
X 3 5 7
3x” bx~ Tx

Figure 2.1 Machin’s formula

The entire program is less than 80 lines and isin the file pi_by digits/pi by dig-
its.go; hereisits main() function.*

func main() {
places := handleCommandLine(1000)
scaledPi := fmt.Sprint(m(places))
fmt.Printf("3.%s\n", scaledPi[1:])
}

The program assumes a default value of 1000 decimal places, although the user
can choose any number they like by entering a value on the command line. The
handleCommandLine() function (not shown) returns the value it is passed or the
number the user entered on the command line (if any, and if it is valid). The
n() function returns  as a big.Int of value 314159...; we print this to a string,
and then print the string on the console properly formatted so that the output
appears as, say, 3.14159265358979323846264338327950288419716939937510
(here we have used a mere 50 digits).

*The implementation used here is based on http://en.literateprograms.org/Pi with Machin's for-
mula_(Python).
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func mn(places int) *big.Int {
digits := big.NewInt(int64(places))
unity := big.NewInt(0)
ten := big.NewInt(10)
exponent := big.NewInt(0)
unity.Exp(ten, exponent.Add(digits, ten), nil) @
pi := big.NewInt(4)
left := arccot(big.NewInt(5), unity)
left.Mul(left, big.NewInt(4)) @
right := arccot(big.NewInt(239), unity)
left.Sub(left, right)
pi.Mul(pi, left) ©
return pi.Div(pi, big.NewInt(0).Exp(ten, ten, nil)) @

The n() function begins by computing a value for the unity variable (10%81s+10)

which we use as a scale factor so that we can do all our calculations using inte-
gers. The +10 adds an extra ten digits to those given by the user, to avoid round-
ing errors. We then use Machin’s formula with our modified arccot() function
(not shown) that takes the unity variable as its second argument. Finally, we

return the result divided by 10" to reverse the effects of the unity scale factor.

To get the unity variable to hold the correct value we begin by creating four
variables, all of type *big.Int (i.e., pointer to big.Int; see §4.1,» 140). The unity
and exponent variables are initialized to 0, the ten variable to 10, and the digits
variable to the number of digits requested by the user. The unity computation is
performed in a single line (@). The big.Int.Add() method adds 10 to the number
of digits. Then the big.Int.Exp() method is used to raise 10 to the power of
its second argument (digits + 10). When used with a nil third argument—as
here—big.Int.Exp(x, y, nil) performs the computation x”; with three non-nil
arguments, big.Int.Exp(x, y, z) computesx’mod z. Notice that we did not need
to assign to unity; this is because most big.Int methods modify their receiver as
well as return it, so here, unity is modified to have the resultant value.

The rest of the computation follows a similar pattern. We set an initial value of
pi to 4 and then compute the inner left-hand part of Machin’s formula. We don’t
need to assign to left after creating it (®), since the big.Int.Mul() method stores
the result in its receiver (i.e., in this case in variable left) as well as returning
the result (which we can safely ignore). Next we compute the inner right-hand
part of the formula and subtract the right from the left (leaving the result in
left). Now we multiply pi (of value 4) by left (which holds the result of Machin’s
formula). This produces the result but scaled by unity. So in the final line (@) we

reverse the scaling by dividing the result (in pi) by 10™.

Using the big. Int type takes some care since most methods modify their receiver
(this is done for efficiency to save creating lots of temporary big.Ints). Compare
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the line where we perform the computation pi x left with the result being stored

in pi (63 <, ®) to the line where we compute pi + 10" and return the result (63 <,
®)—not caring that the value of pi has been overwritten by the result.

Wherever possible it is best to use plain ints, falling back to int64s if the int
range isn’t sufficient, or using float32s or float64s if the fact that they are ap-
proximationsis not a concern. However, if computations of perfect accuracy are
required and we are prepared to pay the price in memory use and processing
overhead, then we can use big. Intsor big.Rats—the latter particularly useful for
financial calculations—scaling if necessary as we did here, when floating-point
computations are required.

2.3.2. Floating-Point Types

Go provides two types of floating-point numbers and two types of complex
numbers—their names and ranges are shown in Table 2.7. Floating-point
numbers in Go are held in the widely used IEEE-754 format (http://en.wiki-
pedia.org/wiki/IEEE 754-2008). This format is also the native format used by
many microprocessors and floating-point units, so in most cases Gois able to take
direct advantage of the hardware’s floating-point support.

Table 2.7 Go’s Floating-Point Types

Type Range
floatsy ~ +3-4028234 x 10%
The mantissa is reliably accurate to about 7 decimal places.
308
float6s +1.797693134 862315 x 10

The mantissa is reliably accurate to about 15 decimal places.
complex64 The real and imaginary parts are both of type float32.
complex128 The real and imaginary parts are both of type float64.

Go floating-point numbers support all the arithmetic operations listed in
Table 2.4 (59 «). Most of the math package’s constants and all of its functions are
listed in Tables 2.8 to 2.10 > 65-67).

Floating-point numbers are written with a decimal point, or using exponential
notation, for example, 0.0, 3., 8.2, —7.4, —6e4, .1, 5.9E-3. Computers commonly
represent floating-point numbers internally using base 2—this means that some
decimals can be represented exactly (such as 0.5), but others only approximately
(such as 0.1 and 0.2). Furthermore, the representation uses a fixed number of
bits, so there is a limit to the number of digits that can be held. This is not a Go-
specific problem, but one that afflicts floating-point numbers in all mainstream
programming languages. However, the imprecision isn’t always apparent, be-
cause Go uses a smart algorithm for outputting floating-point numbers that uses
the fewest possible digits consistent with maintaining accuracy.
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Table 2.8 The Math Package’s Constants and Functions #1

All the math package’s functions accept and return float64s unless specified otherwise. All
the constants are shown truncated to 15 decimal digits to fit neatly into the tables.

Syntax
math.Abs (x)
math.Acos(x)
math.Acosh(x)
math.Asin(x)
math.Asinh(x)
math.Atan(x)
math.Atan2(y, x)
math.Atanh(x)
math.Cbrt(x)

math.Ceil(x)

math.Copysign(x, y)
math.Cos(x)
math.Cosh(x)
math.Dim(x, y)
math.E

math.Erf(x)
math.Erfc(x)
math.Exp(x)
math.Exp2(x)

math.Expml(x)

math.Float32bits(f)

math.
Float32frombits(u)

math.Float64bits(x)

math.
Float64frombits(u)

Description/result

x|, i.e., the absolute value of x

The arc cosine of x in radians

The arc hyperbolic cosine of x in radians
The arc sine of x in radians

The arc hyperbolic sine of x in radians
The arc tangent of x in radians

The arc tangent of 2 in radians

The arc hyperbolic tangent of x in radians
{/x, the cube root of x

[x7],1.e., the smallest integer greater than or equal to x;
e.g.,math.Ceil(5.4) ==6.0

A value with x’s magnitude and y’s sign

The cosine of x in radians

The hyperbolic cosine of x in radians

In effect, math.Max(x -y, 0.0)

The constant e; approximately 2.718 281828 459 045
erf (x); x’s Gauss error function

erfe(x); x’s complementary Gauss error function

e

2°

¢° — 1; this is more accurate than using math.Exp(x) - 1
when x is close to 0

The IEEE-754 binary representation of f (of type
float32) as a uint32

The float32 represented by the IEEE-754 bits in u (of
type uint32)

The IEEE-754 binary representation of x (of type
float64) as a uint64

The float64 represented by the IEEE-754 bits in u (of
type uint64)
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Table 2.9 The Math Package’s Constants and Functions #2

Syntax Description/result

nath. Floor(x) |x|,1i.e., the largest integer less than or equal to x; e.g.,
math.Floor(5.4) ==5.0
frac of type float64 and exp of type int such that

math. Frexp(x) x = frac x 2°%; the inverse function is math.Ldexp()

math.Gamma (x) I'(x),i.e., (x—1)!

math.Hypot(x, y) math.Sqrt(x *x, y *y)

math.Ilogb(x) The binary exponent of x as an int; see also math.Logh()

math.Inf(n) A float64 of value + if n of type int is > 0; otherwise —
true if x of type float64 is +eo and n of type intis >0, or

math.IsInf(x, n) if xis—eandnis <O, or if x is either infinity and n is O;
otherwise false

math.IsNaN(x) true if x has the IEEE-754 “not a number” value

math.JO(x) Jy(x), the Bessel function of the first kind

math.J1(x) J,(x), the Bessel function of the first kind

math.Jn(n, x) J,(x), the order-n (where n is of type int) Bessel function of

' the first kind
71 . . . .

math.Ldexp(x, n) *% 2" where X is (?f type float64 and n is of type int; the
inverse function is math.Frexp()

nath. Lganma (x) log,(I"(x)) as a float64 and the sign of I'(x) as an int (-1
or +1)

math.Ln2 log,(2); approximately 0.693 147 180 559 945

math.Ln10 log,(10); approximately 2.302 585092994 045

math.Log(x) log,(x)

math.Log2E Wl(z); approximately 1.442695 021629333

math.Logl10(x) log, ,(x)

math.Log10E Wl(lo); approximately 0.434 294 492006 301

math. Loglp (x) loge(l +x) but is more accurate than using math.Log() when
X is near zero

math.Log2(x) log,(x)

math.Logb(x) The binary exponent of x; see also math.Ilogb()

math.Max(x, y) The larger of x and y

math.Min(x, y) The smaller of x and y

math.Mod (x, y) The remainder of §; see also math.Remainder()
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Table 2.10 The Math Package’s Constants and Functions #3

Syntax Description/result

math.Modf (x) The whole and fractional parts of x as float64s
math.NaN(x) An IEEE-754 “not a number” value

math).(Ne;;after( The next representable value after x going toward y
math.Pi The constant 1; approximately 3.141592653 589 793
math.Phi The constant ¢; approximately 1.618 033 988 749 984

math.Pow(x, y) &
math.Powl0(n) 10" as a float64; n is of type int

math.Remainder(
X, y)
math.Signbit(x) Returns a bool; true if x is negative (including —0.0)

the IEEE-754-compliant remainder of 3 see also math.Mod()

math.Sin(x) The sine of x in radians

math.SinCos(x) The sine and cosine of x in radians

math.Sinh(x) The hyperbolic sine of x in radians
math.Sqrt(x) Vx

math.Sqrt2 \/2; approximately 1.414 213562373095
math.SqrtE \/e; approximately 1.648 721270700 128

math.SqrtPi \/m; approximately 1.772453 850905516
math.SqrtPhi \/0; approximately 1.272019 649514 068
math.Tan(x) The tangent of x in radians

math.Tanh(x) The hyperbolic tangent of x in radians

math.Trunc(x) x with its fractional part set to 0
math.Y0(x) Y, (x), the Bessel function of the second kind
math.Y1(x) Y, (x), the Bessel function of the second kind

Y, (x), the order-n (where n is of type int) Bessel function of

math.Yn(n, x) the second kind



68 Chapter 2. Booleans and Numbers

All the comparison operations listed in Table 2.3 (57 <) can be used with
floating-point numbers. Unfortunately, due to the fact that floating-point num-
bers are held as approximations, comparing them for equality or inequality does
not always work intuitively.

X,y :=0.0, 0.0
for i :=0; 1 < 10; i++ {
X += 0.1
if i%2 == 0 {
y += 0.2
} else {
fmt.Printf("%-5t %-5t %-5t %-5t", x ==y,
EqualFloat(x, y, -1), EqualFloat(x, y, 0.000000000001),
EqualFloatPrec(x, y, 6))
fmt.Println(x, y)

}

true true true true 0.2 0.2

true true true true 0.4 0.4

false false true true 0.6 0.6000000000000001
false false true true 0.7999999999999999 0.8
false false true true 0.9999999999999999 1

Here we start with two float64s with initial values of 0. We add ten 0.1s to the
first one and five 0.2s to the second, so at the end both should be 1. However, as
the output shown below the code snippet illustrates, perfect accuracy for some
floating-point numbers is not possible. In view of this we must be very careful
when comparing floating-point numbers for equality or inequality using ==
and !=. Of course, there are cases where it is sensible to compare floating-point
numbers for equality or inequality using the built-in operators—for example,
when trying to avoid division by zero, asin, say, if y !=0.0 { returnx / y }.

The "%-5t" format prints a bool left-aligned in a field five characters wide—
string formatting is covered in the next chapter; §3.5, » 93.

func EqualFloat(x, y, limit float64) bool {
if limit <= 0.0 {
limit = math.SmallestNonzeroFloat64
}
return math.Abs(x-y) <=
(limit * math.Min(math.Abs(x), math.Abs(y)))
}

The EqualFloat() function compares two float64s to the given accuracy—or to
the greatest accuracy the machine can achieve if a negative number (e.g., -1)
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is passed as the limit. It relies on functions (and a constant) from the standard
library’s math package.

An alternative (and slower) approach is to compare numbers as strings.

func EqualFloatPrec(x, y float64, decimals int) bool {
a := fmt.Sprintf("%.+f", decimals, x)
b := fmt.Sprintf("%.+f", decimals, y)
return len(a) == len(b) && a ==

}

For this function the accuracy is specified as the number of digits after the dec-
imal point. The fmt.Sprintf() function’s % formatting argument can accept a *
placeholder where it expects a number, so here we create two strings based on
the two given float64s, formatting each with the specified number of decimal
places. If the magnitudes of the numbers differ, then so will the lengths of the
a and b strings (e.g., 12.32 vs. 592.85), which gives us a relatively fast short-cir-
cuiting equality test. (String formatting is covered in §3.5, » 93.)

In most cases where floating-point numbers are needed the float64 type is
the best choice—especially since all the functions in the math package work in
terms of float64s. However, Go also provides the float32 type which may be
useful when memory is at a premium and we either don’t need to use the math
package, or are willing to put up with the minor inconvenience of converting to
and from float64s when necessary. Since Go’s floating-point types are sized it
is always safe to read or write them from or to external sources such as files or
network connections.

Floating-point numbers can be converted to integers using the standard Go
syntax (e.g., int(float)), in which case the fractional part is simply discarded.
Of course, if the floating-point value exceeds the range of the integer type
converted to, the resultant integer will have an unpredictable value. We can
address this problem using a safe conversion function. For example:

func IntFromFloat64(x float64) int {
if math.MinInt32 <= x && x <= math.MaxInt32 {
whole, fraction := math.Modf(x)
if fraction >= 0.5 {
whole++
}
return int(whole)
}
panic(fmt.Sprintf("%g is out of the int32 range", x))
}

The Go Specification (golang.org/doc/go_spec.html) states that an int occupies
the same number of bits as a uint and that a uint is always 32 or 64 bits. This
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implies that an int is at least 32 bits which means that we can safely use the
math.MinInt32 and math.MaxInt32 constants as the int range.

We use the math.Modf () function to separate the whole and fractional parts of the
given number (both as float64s), and rather than simply returning the whole
part (i.e., truncating), we perform a very simple rounding if the fractional part
is >0.5.

Rather than return an error as we did for our custom Uint8FromInt() function
(58 «), we have chosen to treat out-of-range values as important enough to stop
the program, so we have used the built-in panic() function which will cause a
runtime panic and stop the program unless the panic is caught by a recover()
call (§5.5, » 212). This means that if the program runs successfully we know
that no out-of-range conversions were attempted. (Notice also that the function
does not end with a return statement; the Go compiler is smart enough to realize
that a call to panic() means that a normal return cannot occur at that point.)

2.3.2.1. Complex Types

The two complex types supported by Go are shown in Table 2.7 (64 «). Complex
numbers can be created using the built-in complex() function or by using
constant literals involving imaginary numbers. Complex numbers’ components
can be retrieved using the built-in real() and imag() functions, both of which
return a float64 (or a float32 for complex64s).

Complex numbers support all the arithmetic operations listed in Table 2.4
(59 «). The only comparison operators that can be used with complex numbers
are == and != (see Table 2.3, 57 <), but these suffer from the same issues as they
do when comparing floating-point numbers. The standard library has a complex
number-specific package, math/cmplx, whose functions are listed in Table 2.11.

Here are some simple examples:

f 1= 3.2e5 // type: float64

X :=-7.3 - 8.91 // type: complex128 (literal)

y := complex64(-18.3 + 8.91) // type: complex64 (conversion) @

z := complex(f, 13.2 // type: complex128 (construction) @

)
fmt.Println(x, real(y), imag(z)) // Prints: (-7.3-8.9i) -18.3 13.2

Go signifies imaginary numbers using the suffix i as used in pure mathemat-
ics.* Here, the numbers x and z are of type complex128, so their real and imag-
inary parts are of type float64; y is of type complex64 so its components are of
type float32. One subtle point to notice is that using the complex64 type name
(or any other built-in type name for that matter) as a function performs a type
conversion. So here (@), the complex number -18.3+8.9i (of type complex128—the

* By contrast, in engineering and in Python, imaginary numbers are indicated using ;.
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Table 2.11 The Complex Math Package’s Functions

Import "math/cmplx". All the functions accept and return complex128s unless specified oth-

erwise.

Syntax
cmplx.Abs(x)
cmplx.Acos(x)
cmplx.Acosh(x)
cmplx.Asin(x)
cmplx.Asinh(x)
cmplx.Atan(x)
cmplx.Atanh(x)
cmplx. Conj (x)
cmplx.Cos(x)
cmplx.Cosh(x)
cmplx. Cot(x)
cmplx. Exp(x)
cmplx. Inf()
cmplx. IsInf(x)

cmplx. IsNaN(x)

cmplx.Log(x)
cmplx.LoglO(x)
cmplx.NaN()
cmplx.Phase(x)
cmplx.Polar(x)
cmplx.Pow(x, y)
cmplx.Rect(r, )
cmplx.Sin(x)
cmplx.Sinh(x)
cmplx.Sqrt(x)
cmplx.Tan(x)

cmplx.Tanh(x)

Description/result

x|, i.e., the absolute value of x as a float64
The arc cosine of x in radians

The arc hyperbolic cosine of x in radians
The arc sine of x in radians

The arc hyperbolic sine of x in radians
The arc tangent of x in radians

The arc hyperbolic tangent of x in radians
The complex conjugate of x

The cosine of x in radians

The hyperbolic cosine of x in radians

The cotangent of x in radians

e

complex(math.Inf(1), math.Inf(1))

true if real(x) or imag(x) is *oo; otherwise false

true if real(x) or imag(x) is “not a number” and if neither is
too; otherwise false

log, (x)

log;,(x)

A complex “not a number” value

The phase of x as a float64 in the range [-7, +7]

The absolute value r and phase 8 both of type float64,
satisfying x = r x %; phase is in the range [-7, +7]
X

A complex128 with polar coordinates r and 6 both of type
float64

The sine of x in radians

The hyperbolic sine of x in radians

x

The tangent of x in radians

The hyperbolic tangent of x in radians



72 Chapter 2. Booleans and Numbers

inferred complex type for complex literals) is converted to a complex64. However,
complex() is a function (there is no type of that name) that takes two floats and
returns the corresponding complex128 (70 <, @).

Another subtle point is that the fmt.Println() function can print complex
numbers without formality. (As we will see in Chapter 6 we can make our own
types seamlessly cooperate with Go’s print functions simply by providing them
with a String() method.)

In general the best complex type to use is complex128 since all the functions in
the math/cmplx package work in terms of complex128s. However, Go also provides
the complex64 type which may be useful when memory is very tight. Since Go’s
complex types are sized it is always safe to read or write them from or to external
sources such as files or network connections.

In this chapter we have looked at Go’s Boolean and numeric types and presented
tables showing the operators and functions that are available to query and
manipulate them. The next chapter covers Go’s string type, including thorough
coverage of Go’s print formatting functionality (§3.5, » 93), which includes, of
course, the printing of Booleans and numbers formatted as we want. We will see
how to read and write Go data types—including Booleans and numbers—from
and to files in Chapter 8. Before closing this chapter, though, we will review a
small but complete working example program.

2.4. Example: Statistics

The purpose of this example (and the exercises that follow) is to provide some
context for (and practice of) Go programming. Just like in Chapter 1, the ex-
ample makes use of some Go features that haven’t yet been fully covered. This
shouldn’t cause problems since brief explanations and forward references are
provided. The example also introduces some very simple usage of the Go stan-
dard library’s net/http package—this package makes it incredibly easy to create
HTTP servers. As appropriate to the main theme of the chapter, the example
and the exercises are numeric in flavor.

The statistics program (in file statistics/statistics.go) is a web application
that asks the user to enter a list of numbers and then does some very simple
statistical calculations. Figure 2.2 shows the program in action. We will review
the program’s code in two parts, first the implementation of the mathematical
functionality, and then the implementation of the application’s web page. We
won’t show the whole program (e.g., we will skip the imports and most of the
constants), since it is available for download, but we will cover enough to make
it understandable.
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T statistics -lceweasel @ |

File Edit View History Bookmarks Tools Help ] Statistics s
D localhost 2001 kg
v (& we @ hipiflocalhos: 9001 ~ 5 c e WA
Statistics

Statistics
Computes basic statistics for a given list of numbers
Computes basic statistics for a given list of numbers

Numbers (comma or space-separated):
Murnbers (comma or space-separated):

Calculate |
Calculate | )
[ _ Results B Results
MNumbers |3 4455562 71 /. 1HAY] Numbers|[344.5556.27.17.18.6 9]
Counl |10 Connt |10
Mean 5.950000 1
Mean 5.950000
[Medlan  [5.600000

Median ||5.600000

Done

Figure 2.2 The Statistics program on Linux and Windows

2.4.1. Implementing Simple Statistics Functions

For convenience we have created an aggregate type that holds the numbers the
user entered and the two statistics we plan to calculate.

type statistics struct {
numbers []float64
mean float64
median float64

}

A Go struct is similar to a C struct or to a Java class that has public data fields
and no methods—but not like a C++ struct since it isn’t a class. As we will
see, Go structs provide excellent support for aggregation and embedding (§6.4,
» 275), and are also often central to Go’s object-oriented functionality (Chap-
ter 6).

func getStats(numbers []float64) (stats statistics) {
stats.numbers = numbers
sort.Float64s(stats.numbers)
stats.mean = sum(numbers) / float64(len(numbers))
stats.median = median(numbers)
return stats

}

This function accepts a slice of numbers (in this case as obtained by our process-
Request () function » 77), and populatesits stats result value (of type statistics)
with appropriate values. To compute the median we need the numbers to be
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sorted into ascending order; this is achieved using the sort package’s Float64s ()
function which sorts a []float64 in-place. This means that the getStats() func-
tion modifies its argument—something that is quite common when slices, refer-
ences, or pointers are passed to functions. If we wanted to preserve the original
slice of numbers, we could copy it to a temporary slice using the built-in copy()
function (§4.2.3, » 156), and work on the copy.

The mean (or average) is simply the sum of a sequence of values divided by
the number of values in the sequence. Here we have used a separate helper
function to sum the numbers, and converted the length (count of numbers) to a
float64 to make the types compatible (since sum() returns a float64). This also
ensures that we get floating-point division and avoid the truncation that would
occur if we used integers. The median is the middle value; we compute this
separately using the median() function.

We haven’t checked for division by zero since our program’s logic means that
getStats() is only called when there is at least one number; so if we ever break
the logic the program will terminate with a runtime panic. For a mission-critical
application that should never terminate when problems occur we could use Go’s
recover() function to catch panics, restore the application to a sane state, and
continue to run (§5.5, » 212).

func sum(numbers []float64) (total float64) {
for , x := range numbers {
total += x
}
return total

}

This function uses a for ... range loop to iterate over all the numbers (and discard-
ing their index positions) to produce their sum. Thanks to Go alwaysinitializing
variables—including named return values—to their zero value, total correctly
starts at zero.

func median(numbers []float64) float64 {
middle := len(numbers) / 2
result := numbers[middle]
if len(numbers)%2 == 0 {
result = (result + numbers[middle-11) / 2
}

return result

}

This function must be called with a sorted slice of float64s. It initially takes
the median to be the middle value, but if the number of numbers is even there
are actually two middle values, so in that case we sum those values and divide
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by two to get the mean of the two middle values. And at the end we return
the result.

In this subsection we have covered the application-specific processing. In the
next subsection we will look at the basics of implementing the infrastructure
to support a web application that has a single web page. (Readers who aren’t
interested in web programming might prefer to skip to the exercises or to the
next chapter.)

2.4.2. Implementing a Basic HI'TP Server

The statistics program provides a single web page on the local host. Here is its
main() function.

func main() {
http.HandleFunc("/", homePage)
if err := http.ListenAndServe(":9001", nil); err != nil {
log.Fatal("failed to start server", err)

}

The http.HandleFunc() function takes two arguments: a path and a reference
to a function to call when that path is requested. The function must have the
signature func(http.ResponseWriter, xhttp.Request). We can register as many
path—function pairs as we like. Here we have registered the / path (i.e., the web
application’s home page) with a custom homePage () function.

The http.ListenAndServe() function starts up a web server at the given TCP
network address; here we have used localhost and port number 9001. The local
host is assumed if only the port number is given—we could just as easily have
used an address of "localhost:9001" or "127.0.0.1:9001". (The port number we
have chosen is arbitrary—simply change the code to use a different one if it
conflicts with an existing server.) The second argument is used to specify which
kind of server to use—normally we pass nil to indicate that we want to use the
default kind.

The program has several string constants but we will only show one of them
here.

form = "<form action="/" method="POST">
<label for="numbers">Numbers (comma or space-separated):</label><br />
<input type="text" name="numbers" size="30"><br />
<input type="submit" value="Calculate">
</form>"

The form string constant contains a <form> element which itself contains the text
and submit button <input> elements.


http.HandleFunc()
http.ResponseWriter
*http.Request
http.ListenAndServe()
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func homePage(writer http.ResponseWriter, request *http.Request) {
err := request.ParseForm() // Must be called before writing response
fmt.Fprint(writer, pageTop, form)
if err != nil {
fmt.Fprintf(writer, anError, err)
} else {
if numbers, message, ok := processRequest(request); ok {
stats := getStats(numbers)
fmt.Fprint(writer, formatStats(stats))
} else if message != "" {
fmt.Fprintf(writer, anError, message)
}
}
fmt.Fprint(writer, pageBottom)
}

This function is called whenever the statistics web site is visited. The writer ar-
gument is where we write our response to (in HTML) and the request argument
contains details of the request.

We begin by parsing the form (which will initially have an empty text <input>
element. We have called the text <input> element “numbers” so that we can
refer to it when we process the form later on. Also, the form’s action is set to
/, so when the user presses the Calculate button the same page is requested
again. This means that the homePage() function is called in all cases, so it must
handle the initial case where no numbers have been entered, and subsequent
cases where numbers have been entered or where an error has occurred. In fact,
all the work is passed on to a custom processRequest () function, so it is in that
function that each case is dealt with.

After the parse, we write the pageTop (not shown) and form string constants. If
the parse fails for any reason we write an error message; anError is a format
string and err is the error value to be formatted. (Format strings are covered
later; §3.5, » 93.)

anError = "<p class="error">%s</p>"

If the parse succeeds (as it should), we call a custom processRequest () function to
retrieve the numbers entered by the user ready for processing. If the numbers
are valid we compute the statistics using the getStats() function we saw earlier
(73 <) and write the formatted results; otherwise we write an error message if
we are given one. (When the form is shown for the first time it has no numbers,
yet no error has occurred, in which case ok is false and message is empty.) And
at the end we print the pageBottom constant string (not shown) which just closes
the <body> and <html> tags.
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func processRequest(request xhttp.Request) ([]float64, string, bool) {
var numbers []float64
if slice, found := request.Form["numbers"]; found & len(slice) > 0 {
text := strings.Replace(slice[0], ",", " ", -1)
for , field := range strings.Fields(text) {
if x, err := strconv.ParseFloat(field, 64); err !'= nil {
return numbers, "'" + field + "' is invalid", false
} else {
numbers = append(numbers, x)
}
}
}
if len(numbers) == 0 {
return numbers, "", false // no data first time form is shown
}

return numbers, "", true

}

This function reads the form’s data from the request value. If the form is being
shown for the first time the “numbers” text <input> element is empty. This isn’t
an error so we return an empty slice of float64s, an empty error message, and
false to indicate that there are no statistics to gather—this results in the empty
form being shown. If the user has entered some numbers we return either a
slice of float64s, an empty error message, and true; or, if one or more numbers
is invalid, a possibly empty slice, an error message, and false.

The request value has a Form field of type map[string][]string (§4.3,» 164). This
means that the map’s keys are strings and its values are slices of strings. So any
one key may have any number of strings as its value. For example, if the user
has entered the numbers “5 8.2 7 13 6”, the Form map will have a "numbers" key
with a value of []string{"58.27 136"}, that is, its value will be a slice of strings
that actually has only one string. (For comparison, here is an example of a slice
of two strings: []string{"123", "ab c"}.) We check to see if the "numbers" key is
present (it ought to be), and if it is—and if its value has at least one string—we
know that we have numbers to read.

We use the strings.Replace() function to obtain the string of numbers that the
user entered but with any commas replaced by spaces. (The third argument
is the number of replacements to perform; -1 means do as many as possible.)
Having obtained the string of whitespace-separated numbers we then use the
strings.Fields() function to split the string (on any amount of whitespace) into
a slice of strings which we iterate over straight away using a for ... range loop.
(The strings package’s functions are covered in §3.6, » 106; the for ... range loop
is covered in §5.3, » 203.) For each string (“5”,“8.2”, etc.) we attempt to convert
it to a float64 using the strconv.ParseFloat() function which takes a string to
parse and a bit size of 32 or 64 (§3.6, » 106). If the conversion fails we imme-
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diately return with whatever float64s we have, a nonempty error message, and
false. If the conversion succeeds we append the float64 to the numbers slice. The
built-in append () function takes a slice and one or more values and returns a slice
that has all the items from the original slice plus the values—the function is
smart enough to reuse the original slice if its capacity is greater than its length,
so it is efficient to use. (We cover append() in §4.2.3, > 156.)

If we haven’t already returned due to an error (i.e., an invalid number), we
return the numbers with an empty error message and true, unless there are no
numbers to process (because the form has been shown for the first time) in which
case we return false.

func formatStats(stats statistics) string {
return fmt.Sprintf( <table border="1">
<tr><th colspan="2">Results</th></tr>
<tr><td>Numbers</td><td>%v</td></tr>
<tr><td>Count</td><td>%d</td></tr>
<tr><td>Mean</td><td>%f</td></tr>
<tr><td>Median</td><td>%f</td></tr>
</table>", stats.numbers, len(stats.numbers), stats.mean, stats.median)

}

Once the statistics have been computed we must output them to the user,
and since the program is a web application we need to produce HTML. (Go’s
standard library has dedicated text/template and html/template packages for
creating data-driven text and HTML, but our needs here are so simple that we
have chosen to do it all by hand. A small text/template-based example is shown
later; §9.4.2, » 419.)

The fmt.Sprintf() function takes a format string and one or more values and re-
turns a string that is a copy of the format string but with the format verbs (e.g.,
%V, %d, %f) replaced with corresponding values. (String formatting is thoroughly
covered in §3.5,» 93.) We had no need to do any HTML escaping since all of our
values are numbers. (If escaping is needed we can use the template.HTMLEscape()
or html.EscapeString() functions.)

As this example illustrates, Go makes it easy to create simple web applications
—providing we know some basic HTML—and provides the html, net/http, html/
template, and text/template packages to make life easier.

2.5. Exercises

There are two exercises for this chapter, both numeric in flavor. The first
involves modifying the statistics program we have just reviewed; the second
involves creating a simple mathematical web application from scratch.
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1. Copy the statistics directory to, say, my statistics and modify my statis-
tics/statistics.go to produce two more statistical measures: the mode and
the standard deviation. When the user clicks the Calculate button it should
produce output similar to that shown in Figure 2.3.

‘800 Statistics
- | |L" A http: / /localhost: 9001/ ¢ Har
Statistics

Computes basic statistics for a given list of numbers

Numbers (comma ar space-separated):

[ Caleulare

Results
Numbers |[[3 4 4.5556.27.17.18.59]
Count 10

Mean 5.940000
Median |5.600000
Mode [57.1]

Std. Dev. [1.9698B4

Figure 2.3 The Statistics solution on Mac OS X

This involves adding a couple more items to the statistics struct and
adding two new functions to perform the calculations. A solution is in
the file statistics ans/statistics.go; this needed about 40 extra lines and
made use of the built-in append() function (§4.2.3, » 156) to add numbers to
a slice.

The standard deviation function is the easiest to write—it just requires the
use of some functions from the math package and can be done in fewer than
L-%

n-17
mean, and n is the number of numbers.

ten lines. We used the formula ¢ = where x is each number, x is the

The mode is the most frequently occurring number—or numbers, if two
or more are equally the most frequently occurring. However, we return
no mode if all of the numbers occur with the same frequency. The mode is
trickier than the standard deviation, and needs about 20 lines of code.

2. Create a web application for calculating the solution or solutions to quadrat-

—b+\b>- dac
2a

bers so that it is possible to find solutions even when the discriminant (the

ic equations using the standard formula x = . Use complex num-

b° - 4dac part) is negative. Initially, just get the math working, as shown
in Figure 2.4’s left-hand screenshot (» 80). Then, modify your application
to produce more intelligent output, as shown in Figure 2.4’s right-hand
screenshot.
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2 Quadratic Caquation Solver - iceweasel B I Quadratic Cquation Solver - lcewea® _
FElle Edit \iew History Bookmarks Tocls Help File Edit View History Buokmarks Tools
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Quadratic Equation Solver Quadratic Equation Solver

Solves equations of the form ax< + hx + ¢ Solves equations of the form ax? + by 1 ¢
x4 X+ — | Calculate Wz W »| Calculate

2x2 4+ 0x + -11 = x—(2.345208+0.000000i) 2x7 - 11 - x=2.345 or x=-2.345

ar x=(-7.345208+0.0000001)

Done Done

Figure 2.4 The Quadratic solutions on Linux

One easy way to get started is to copy the statistics application’s main(),
homePage(), and processRequest() functions, modifying homePage() to call
three new custom functions—formatQuestion(), solve(), and formatSolu-
tions()—and heavily modifying processRequest() to read in three separate
floating-point numbers. The file quadratic_ansl/quadratic.go contains an
initial application of about 120 lines. This version is smart enough to out-
put just one solution if both solutions are approximately equal by making
use of the EqualFloat() function discussed earlier in the chapter (68 <).

A second application is in file quadratic_ans2/quadratic.go; this runs to
about 160 lines and is much smarter about how it formats the output. For
example, it replaces “+ -” with “-” and “1x” with “x”, suppresses zero com-
ponents (e.g., eliminates “Ox”), and formats a solution as a floating-point
number if the imaginary part is approximately zero. It makes use of some
math/cmplx package functions such as cmplx.IsNaN(), and more advanced

string formatting (§3.5, » 93).
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This chapter covers Go’s string type and key string-related packages from the
standard library. The chapter’s sections include coverage of how to write literal
strings and use the string operators; how to index and slice (take substrings of)
strings; and how to format the output of strings, numbers, and other built-in and

custom types.

Go’s high-level string-related functionality, such as its for ... range loop which
iterates over a string character by character, the functions from the strings and
strconv packages, and Go’s ability to slice strings, are all that is needed for every-
day programming. Nonetheless, this chapter covers Go strings in depth, includ-

81
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Prior to Unicode it was not really possible to have plain text files that con-
tained text in different languages—for example, English with some quoted
sentences in Japanese and Russian—since separate encodings were used for
separate languages and each text file used a single encoding.

Unicode is designed to be able to represent the characters from all of the
world’s writing systems, so a single text file using a Unicode encoding can
contain text in any mixture of languages—as well as math, “dingbats”, and
other special characters.

Every Unicode character has a unique identifying number called a code point.
There are more than 100000 Unicode characters defined, with code points
ranging in value from 0x0 to 0x10FFFF (the latter defined in Go as the constant
unicode.MaxRune), with some large gaps and various special cases. In Unicode
documentation, code points are written using four or more hexadecimal digits
in the form U+hhhh—for example, U+21D4 for the « character.

In Go, an individual code point (i.e., a character) is represented by a rune in
memory. (The rune type is a synonym for int32; see §2.3.1, 59 <)

Unicode text—whether in files or in memory—must be represented using
an encoding. The Unicode standard defines various Unicode Transformation
Formats (encodings), such as UTF-8, UTF-16,and UTF-32. Go uses the UTF-8
encoding for strings. UTF-8 is the most widely used encoding; it is also the de
facto standard encoding for text files and the default encoding for XML and
JSON files.

The UTF-8 encoding uses between one and four bytes to represent each code
point. For strings that contain only 7-bit ASCII (US-ASCII) characters, there
is a one-to-one relationship between bytes and characters because each 7-bit
ASCII character is represented by a single byte (of the same value) in UTF-8.
One consequence of this is that UTF-8 stores English text very compactly
(one byte per character); another consequence is that a text file encoded using
7-bit ASCII is indistinguishable from a UTF-8-encoded text file.

ing some low-level details such as how strings are represented internally. The
low-level aspects are interesting and can be useful to know in some situations.

A Go string is an immutable sequence of arbitrary bytes. In most cases a string’s
bytes represent Unicode text using the UTF-8 encoding; (see the “Unicode”
sidebar above). The use of Unicode means that Go strings can contain text in
a mixture of any of the world’s languages, without any of the confusions and
limitations of code pages.

Go’s string type is fundamentally different from the equivalent type in many
other languages. Java’s String, C++s std.:string, and Python 3’s str types are all
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sequences of fixed-width characters (with some caveats), whereas a Go string is
a sequence of variable-width characters where each character is represented by
one or more bytes, normally using the UTF-8 encoding.

At first sight it might appear that these other languages’ string types are more
convenient than Go’s since individual characters in their strings can be direct-
ly indexed—something only possible in Go if the string exclusively holds 7-bit
ASCII characters (since these are all represented by a single UTF-8 byte). In
practical terms this is never a problem for Go programmers: first, because direct
indexing isn’t used much in Go because Go supports character-by-character iter-
ation over strings; second, because the standard library provides a comprehen-
sive range of string searching and manipulation functions; and third, because
we can always convert a Go string into a slice of Unicode code points (of type
[1rune) which can be indexed directly.

Go’s use of UTF-8 for its string type has several advantages compared with,
say, Java or Python, both of which also have Unicode strings. Java represents
strings as sequences of code points, each occupying 16 bits; Python versions 2.x
to 3.2 use the same approach but using 16 or 32 bits depending on how Python
is built. For English text this means that Go uses 8 bits per character compared
to at least twice that for Java and Python. Another advantage of UTF-8 is that
machine endianness doesn’t matter, whereas for UTF-16 and UTF-32 it is essen-
tial to know the endianness (e.g., UTF-16 little-endian) to be able to decode the
text correctly. In addition, since UTF-8 is the world’s de facto standard encoding
for text files, while other languages must decode and encode such files to con-
vert to and from their internal Unicode representations, Go can read and write
such files directly. Furthermore, some major libraries (such as GTK+) use UTF-
8 strings natively, so Go can work with them without encoding or decoding.

In practice, Go strings are just as convenient and easy to use as other languages’
string types—once we have learned the Go idioms for working with them.

3.1. Literals, Operators, and Escapes

String literals are created using double quotes (") or backticks (*). Double quotes
are used to create interpreted string literals—such strings support the escape
sequences listed in Table 3.1 (> 84) but may not span multiple lines. Backticks
are used to create raw string literals—these strings may span multiple lines;
they do not support any escape sequences and may contain any character except
for a backtick. Interpreted string literals are the most commonly used kind,
but raw string literals are useful for writing multiline messages, HTML, and
regular expressions. Here are a few examples.

textl := "\"what's that?\", he said" // Interpreted string literal
text2 := ""what's that?", he said® // Raw string literal
radicals := "V \u221A \U0000221a" // radicals == "V v V"
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Table 3.1 Go’s String and Character Escapes

Escape Meaning

\\ Backslash (\)

\ooo Unicode character with the given 3-digit 8-bit octal code point
\! Single quote ('); only allowed inside character literals

\" Double quote (); only allowed inside interpreted string literals
\a ASCII bell (BEL)

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\r ASCII carriage return (CR)

\t ASCII tab (TAB)

\uhhhh Unicode character with the given 4-digit 16-bit hex code point

\Uhhhhhhhh Unicode character with the given 8-digit 32-bit hex code point
\Vv ASCII vertical tab (VT)
\xhh Unicode character with the given 2-digit 8-bit hex code point

The three variables created here are of type string, and textl and text2 contain
exactly the same text. Since .go files use the UTF-8 encoding we can include
Unicode characters in them without formality. However, we can still use
Unicode escapes as we have done here for the second and third v symbols. We
could not use an octal or hexadecimal escape in this particular case, since their
code point range is limited to U+0000 to U+00FF, far too small for the v symbol’s
U+221A code point value.

If we want to create a long interpreted string literal without having an equally
long line in our code we can create the literal in pieces, joining the pieces us-
ing the + concatenation operator. Furthermore, although Go’s strings are im-
mutable, they support the += append operator: This replaces the underlying
string with its concatenation with the appended string, if the underlying string’s
capacity isn’t large enough to accommodate the appended string. These opera-
tors are listed in Table 3.2 (» 85). Strings can be compared using the compari-
son operators (see Table 2.3, 57 «). Here is an example that uses some of these
operators:

book := "The Spirit Level" + // String concatenation
" by Richard Wilkinson"
book += " and Kate Pickett" // String append

fmt.Println("Josey" < "José", "Josey" == "José") // String comparisons
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Table 3.2 String Operations

All usesof the [] slice operator are fine for strings containing only 7-bit ASCII characters;
but care is needed for strings containing non-ASCII characters (see §3.4, » 90).

Strings can be compared using the standard comparison operators: <, <=, ==, !=, >=, >= (see
Table 2.3,57 € and $3.2, » 86.)

Syntax Description/result

s +=t Appends string t to the end of string s

s+t The concatenation of strings s and t

s[n] The raw byte at index position n (of type uint8)in s
s[n:m] A string taken from s from index positionsntom - 1
sn:] A string taken from s from index positions n to len(s) - 1
s[:m] A string taken from s from index positions 0 tom - 1
len(s) The number of bytes in string s

len([Irune(s)) The number of charactersin string s—use the faster utf8.
RuneCountInString() instead; see Table 3.10 > 118)

[1rune(s) Converts string s into a slice of Unicode code points

string(chars) Convertsa []rune or [1int32 into a string; assumes that the
runes or int32s are Unicode code points*

[1byte(s) Converts string s into a slice of raw bytes without copying;
there’s no guarantee that the bytes are valid UTF-8

string(bytes) Convertsa []byte or [Juint8 into a string without copying;
there’s no guarantee that the bytes are valid UTF-8

string(1) Converts i of any integer type into a string; assumes that i
is a Unicode code point; e.g., if i is 65, it returns "A"*

strconv. The string representation of i of type int and an error;e.g.,
Itoa(i) if i is 65, it returns ("65", nil); see also Tables 3.8 and 3.9
0> 114-115)

fmt.Sprint(x)  The string representation of x of any type;e.g., if x is an
integer of value 65, it returns "65"; see also Table 3.3 > 94)

This results in book containing the text “The Spirit Level by Richard Wilkinson
and Kate Pickett”, and “true false” being output to os.Stdout.

* The conversion always succeeds; invalid integers are converted as the Unicode replacement
character U+FFFD which is often depicted as @.
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3.2. Comparing Strings

As we have noted, Go strings support the usual comparison operators (<, <=, ==,
I=,> >=); these are shown in Table 2.3 (57 «). The comparison operators compare
strings byte by byte in memory. Comparisons are used directly—for example,
to compare two strings for equality, and indirectly—for example, when < is used
to compare the strings in a []string that is being sorted. Unfortunately, three
problems can arise when performing comparisons—these problems afflict every
programming language that uses Unicode strings; none of them is specific
to Go.

The first problem is that some Unicode characters can be represented by two
or more different byte sequences. For example, the character A could be the
Angstrém symbol or simply an A with a ring above—the two are often visually
indistinguishable. The Angstrém symbol’s Unicode code pointis U+212B,but an A
with a ring above can be represented by Unicode code point U+00C5 or by the two
code points U+0041 (A) and U+030A (° combining ring above). In terms of UTF-8
bytes the Angstrém symbol A)is represented by the bytes [0xE2, 0x84, 0xAB], the
A character by the bytes [0xC3, 0x85], and an A with the ° combining character by
the bytes [0x41, 0xCC, 0x81]. Of course, from a user’s point of view two A charac-
ters ought to compare and sort as equals no matter what the underlying bytes.

This first problem isn’t necessarily as significant as we might imagine since all
UTF-8 byte sequences (i.e., strings) in Go are produced using the same code
point to bytes mappings. This means, for example, that an é character in a Go
character or string literal will always be represented by the same bytes. And,
of course, if we are only concerned with ASCII characters (i.e., English), the
problem doesn’t occur at all. And even when we deal with non-ASCII characters,
the problem only really arises when we have two different characters that look
the same, or when we are reading UTF-8 bytes from outside our program from
a source that has used code point to bytes mappings that are legal UTF-8 but
which differ from Go’s mappings. If this really does turn out to be a problem it
is always possible to write a custom normalization function that, for example,
ensured that, say, é was always represented by the bytes [0xC3, 0xA9] (which Go
uses natively) rather than, say, [0x65, 0xCC, 0x81] (i.e., an e and an ~ combining
character). Normalizing Unicode charactersis explained in the Unicode Normal-
ization Forms document (unicode.org/reports/tri15). At the time of this writing,
the Go standard library has an experimental normalization package (exp/norm).

Since this first problem can only really arise with strings coming from external
sources—and then only if they use different code point to bytes mappings than
Go—it is probably best handled by isolating the code that accepts external
strings. The isolating code could then normalize the strings it receives before
providing them to the rest of the program.
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The second problem is that there are cases where our users might reasonably
expect different characters to be considered equal. For example, we might write
a program that provides a text search function and a user might type in the word
“file”. Naturally, they would expect the search to find any occurrences of “file”;
but they might also expect the search to match occurrences of “file” (i.e., an “fi”
ligature followed by “le”). Similarly, users might expect a search for “5” to match

“5” “ » “5”

,“,“”, and maybe even “®”. As with the first problem, this can be solved by
using some form of normalization.

The third problem is that the sorting of some characters is language-specific.
One example is that in Swedish d is sorted after z, whereas in German phone-
books d is sorted as though it were spelled ae and in German dictionaries as
though it were spelled a. Another example is that although in English we sort g
asthough it were o,in Danish and Norwegian it is sorted after z. There are lots of
rules along these lines, and they can be complicated by the fact that sometimes
the same application is used by people of different nationalities (who therefore
expect different sorting orders), and sometimes strings are in a mixture of lan-
guages (e.g., some Spanish, others English), and some characters (such as ar-
rows, dingbats, and mathematical symbols) don’t really have meaningful sort
positions at all.

On the plus side, Go’s comparing of strings byte by byte produces an ASCII sort
ordering for English. And if we lowercase or uppercase all the strings we want
to compare, we can get a more natural English language ordering—as we will
see in an example later (§4.2.4, » 160).

3.3. Characters and Strings

In Go, characters are represented in two different (easy-to-interchange) ways. A
single character can be represented by a single rune (or int32). From now on we
will use the terms “character”, “code point”, “Unicode character”, and “Unicode
code point” interchangeably to refer to a rune (or int32) that holds a single
character. Go strings represent sequences of zero or more characters—within

a string each character is represented by one or more UTF-8 encoded bytes.

We can convert a single character into a one-character string using Go’s
standard conversion syntax (string(char)). Here is an example.
@s = ""
for , char := range []rune{'a', OxE6, 0346, 230, '\xE6', "\uOOE6'} {
fmt.Printf("[0x%X '%c'] ", char, char)
&s += string(char)
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This will print a line containing the text “[0xE6 '&']” repeated six times. And
at the end the s string will contain the text zzzzzz. (We will see more efficient
alternatives to using the string += operator in a loop in a moment.)

An entire string can be converted to a slice of runes (i.e., code points) using the
syntax chars := []rune(s) where s is of type string. The chars will have type
[1int32 since rune is a synonym for int32. This can sometimes be useful when
we want to parse a string working character by character and at the same
time be able to peek at characters before or after the current one. The reverse
conversion is equally simple using the syntax s := string(chars) where chars is
of type []rune or [1int32; s will have type string. Neither conversion is free—but
both are reasonably fast (O(n) where n is the number of bytes; see the sidebar
“Big-O Notation”, » 89). For more string conversions see Table 3.2 (85 «); for
number<«sstring conversions see Tables 3.8 and 3.9 > 114-115).

Although convenient, using the string += operator is not the most efficient way
to append to a string in a loop. A better approach (and one familiar to Python
programmers) is to populate a slice of strings ([]string) one at a time and then
concatenate them all in one go using the strings.Join() function. For Go,
though, there is an even better way, similar to the way Java’s StringBuilder
works. Here is an example.

var buffer bytes.Buffer
for {
if piece, ok := getNextValidString(); ok {
buffer.WriteString(piece)
} else {
break
}

}
fmt.Print(buffer.String(), "\n")

We begin by creating an empty bytes.Buffer. Then we write each string we want
to concatenate into the buffer using its bytes.Buffer.WriteString() method. (We
could, of course, write a separator between each string if we wanted to.) At
the end, the bytes.Buffer.String() method can be used to retrieve the entire
concatenated string. (We will see further uses of the powerful and versatile
bytes.Buffer type later, e.g., » 111 and » 201.)

Accumulating strings in a bytes.Buffer is potentially much more memory- and
CPU-efficient than using the += operator, especially if the number of strings to
concatenate is large.

Go’s for ... range loop (§5.3, » 203) can be used to iterate over a string character
by character, producing an index position and a code point at each iteration.
Here is an example with its output beside it.
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Big-O Notation @

Big-O notation, O(...), is used in complexity theory to give approximate
bounds for processing and for memory use for particular algorithms. Most of
the measures are in proportion to n which is the number of items to process
or the length of the item to process. They could be measures of memory con-
sumption or of processing time.

O(1) means constant time, that is, the fastest possible time no matter what
n’s size. O(log n) means logarithmic time; this is very fast and in proportion to
log n. O(n) means linear time; this is fast and in proportion to n. O(z? means
quadratic time; this is starting to get slow and is in proportion to n% On™)
means polynomial time which quickly becomes slow as n grows, especially if
m > 3. O(n!) means factorial time; even for small values of n this can become

too slow to be practical.

This book uses big-O notation in a few places to give a feel for the costs of
processing, for example, the cost of converting from a string to a []rune.

phrase := "vatt og tort" string: "vatt og tart"
fmt.Printf("string: \"%s\"\n", phrase) index rune char bytes
fmt.Println("index rune char bytes") 0 U+0076 'v' 76

for index, char := range phrase {
fmt.Printf("%-2d U '%c' % X\n",
index, char, char,

U+00E5 'a' (€3 A5
u+0074 't' 74
u+0074 't' 74

O N O Ul B W

[Ibyte(string(char))) U+0020 ' ' 20

} U+006F 'o' 6F
U+0067 'g' 67

U+0020 ' ' 20

9 U+0074 't' 74
10 U+00F8 'g' (3 B8
12 u+0072 ‘'r' 72
13 u+0074 't' 74

We create the phrase string literal, and then we print it followed by a heading
on the next line. Then we iterate over every character in the string—Go’s for
... range loop decodes UTF-8 bytes into Unicode code points (runes) as it iterates,
so we don’t have to concern ourselves with the underlying representation. For
each character, we print its index position, its code point value (using Unicode
notation), the character it represents, and the UTF-8 bytes used to encode
the character.

To get the list of bytes we convert the code point (char of type rune) into a string
(which will contain a single character consisting of one or more UTF-8-encoded
bytes). Then we convert this one-character string into a []byte, that is, a byte
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slice, so that we can access the actual bytes. The []byte(string) conversion is
very fast (O(1)) since under the hood the []byte can simply refer to the string’s
underlying bytes with no copying required. The same is true of the reverse
conversion, string([]byte); again the underlying bytes are not copied, so the
conversion is O(1). Table 3.2 (85 «) lists Go’s string and byte conversions.

The %-2d, %U, %c, and % X format specifiers are explained shortly (§3.5, » 93). As
we will see, when the %X format specifier is used for an integer it outputs the
integer in hexadecimal, and when it is used for a []byte it outputs a sequence of
two-digit hexadecimal numbers, one number per byte. Here we have specified
that the bytes should be output space-separated by including a space in the
format specifier.

In practical programming using a for ... range loop to iterate over the characters
in a string, along with the functions from the strings and fmt packages (and to
a lesser extent from the strconv, unicode, and unicode/utf8 packages), provides
all the functionality needed for the powerful and convenient processing and
manipulation of strings. However, in addition, the string type supports slicing
(since under the hood a string is in effect an enhanced []byte), and this can be
very useful—providing we are careful not to slice any multibyte characters
in half!

3.4. Indexing and Slicing Strings

As Table 3.2 (85 <) shows, Go supports string slicing using a subset of the
syntax used by Python. This syntax can be used for slices of any type, as we will
see in Chapter 4.

Since Go strings store their text as UTF-8-encoded bytes we must be careful to
only ever slice on character boundaries. Thisis easy if we have 7-bit ASCII text
since every byte represents one character, but for non-ASCII text the situation
is more challenging since such characters may be represented by one or more
bytes. Usually we don’t need to slice strings at all but simply iterate over them
character by character using a for ... range loop, but in some situations we really
do want to extract substrings using slicing. One way to be sure to use slice
indexes that slice on character boundaries is to use functions from Go’s strings
package, such as strings.Index() or strings.LastIndex(). The strings package’s
functions are listed in Tables 3.6 and 3.7 (> 108-109).

We will begin by looking at the different ways we can perceive a string. Index
positions—which are the positions of the string’s UTF-8 bytes—begin at 0 and
go up to the length of the string minus 1. It is also possible to index back from
the end of the slice using indexes of the form len(s) - n where n is the number
of bytes counting back from the end. For example, given the assignment s :=
"naive", Figure 3.1 shows string s as Unicode characters, code points, and bytes,
as well as some valid index positions and a couple of slices.
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s[:2] s[2:] == s[len(s)-4:]

< i< . Slices
‘n' '‘a’ i 'v! 'e! Characters
U+006E U+0061 U+0OEF U+0076 U+0065  Code points

Ox6E 0x61 0xC3 OxXAF 0x76 0x65 Bytes

0 ! 2 3 4 > Indexes

len(s)-2 len(s)-1

Figure 3.1 Anatomy of a string

Each index position shown in Figure 3.1 can be used with the [] index operator
to return the corresponding ASCII character (as a byte)—for example, s[0] ==
'n' and s[len(s) - 1] == 'e'. The index position of the start of the i character is
2, but if we used s[2] we would simply get the first of the UTF-8 bytes used to
encode 7 (0xC3); such bytes are rarely what we want.

For strings that contain only 7-bit ASCII characters we can extract the first
character (as a byte) using the syntax s[0], and the last character using s[1len(s)
- 1]. However, in general we should use utf8.DecodeRuneInString() to get the first
character (as a rune, along with the number of UTF-8 bytes used to represent
it), and utf8.DecodeLastRuneInString() to get the last character. (See Table 3.10,
> 118.)

If we really need to index individual characters, a couple of options are open
to us. For strings that contain only 7-bit ASCII we can simply use the [] index
operator which gives us very fast (O(1)) lookups. For non-ASCII strings we can
convert the string to a []rune and use the [] index operator. This delivers very
fast (O(1)) lookup performance, but at the expense of the one-off conversion
which costs both CPU and memory (O(n)).

In the case of our example, if we wrote chars := []rune(s), the chars variable
would be created as a rune (i.e., int32) slice with the five code points—compared
with six bytes—shown in Figure 3.1. Recall that we can easily convert any rune
(code point) back to a string—containing one character—using the string(char)
syntax.

For arbitrary strings (i.e., those that might contain non-ASCII characters), ex-
tracting characters by index is rarely the right approach. Much better is to use
string slicing—which also has the convenience of returning a string rather than
a byte. To safely slice arbitrary strings, it is best to find the index position where
we want to slice up to or from using one of the strings package’s functions—see
Tables 3.6 and 3.7 > 108-109).

The following equality holds for string slices—and, in fact, for slices of every
kind:

s == s[:1] + s[i:] // s is a string; 1 is an int; 0 <= 1 <= len(s)
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Now let’s look at a real slice example, one that takes a rather naive approach.
Suppose we have a line of text and want to extract the line’s first and last words.
One simple way to write the code is like this:

line := "rgde og gule slgjfer"”

i := strings.Index(line, " ") // Get the index of the first space
firstWord := line[:i] // Slice up to the first space

j := strings.LastIndex(line, " ") // Get the index of the last space
lastWord := line[j+1:] // Slice from after the last space

fmt.Printin(firstWord, lastWord) // Prints: rode slojfer

The firstWord (of type string) is assigned the bytes from the line from index po-
sition O (the first byte) to index position i - 1 (i.e., up to the last byte before the
space) since string slices go up to but exclude the end index position. Similarly,
the lastWord is assigned the bytes from the line from index position j + 1 (the byte
after the space), to the end of the line’s bytes (i.e., to index position len(line) -
1).

Although this example’s approach is fine for spaces and would also work for oth-
er 7-bit ASCII characters, it isn’t suitable for working with arbitrary Unicode
whitespace characters such as U+2028 (Line Separator,E[) or U+2029 (Paragraph
Separator, [§)).

Hereis how to find the first and last words of a string no matter what whitespace
characters are used to separate the words.

line := "ra tert\u2028var"

i := strings.IndexFunc(line, unicode.IsSpace) // 1==3
firstWord := line[:i]

j := strings.LastIndexFunc(line, unicode.IsSpace) // j ==

_, size := utf8.DecodeRuneInString(line[j:]) // size ==
lastWord := line[j+size:] // j + size == 12
fmt.Println(firstWord, lastWord) // Prints: ra ver

The line string is shown as characters, code points, and bytes in Figure 3.2;
the figure also shows the byte index positions and the slices used in the code
snippet.

The strings.IndexFunc() function returns the first index position in the string
given as its first argument where the function given as its second argument
(with signature func(rune) bool) returns true. The strings.LastIndexFunc() does
the same except that it works from the end of the string and returns the last in-
dex position for which the function returns true. Here we pass the unicode pack-
age’s IsSpace() function as the second argument; this function accepts a Unicode
code point (of type rune) as its sole argument and returns true if the code point
is of a whitespace character. (See Table 3.11,» 119.) A function’s name is a ref-
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line[j:]

line[:i] line[j+size:] Slices
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Figure 3.2 Anatomy of a string with whitespace

erence to the function, and so can be passed wherever a function parameter is
required—so long as the named (i.e., referred to) function’s signature matches
that specified by the parameter. (See §4.1, >» 140.)

Using the strings.IndexFunc() function to find the first whitespace character
and slicing the string up to but excluding that character to get the first word is
easy. But when searching for the last whitespace character we must be careful
because some whitespace characters are encoded as more than a single UTF-8
byte. We solve this problem by using the utf8.DecodeRuneInString() function
to give us the number of bytes occupied by the first character in the slice of the
string that starts where the last whitespace character begins. We then add this
number to the last whitespace character’s index position to jump over the last
whitespace character—however many bytes are used to represent it—so that we
slice only the last word.

3.5. String Formatting with the Fmt Package

Go’s standard library’s fmt package provides print functions for writing data as
strings to the console, to files and other values satisfying the io.Writer interface,
and to other strings. These functions are listed in Table 3.3 (» 94). Some of
the print functions return an error. It is not uncommon to ignore this return
value when printing to the console, but the error should always be checked when
printing to files, network connections, and so on.*

The fmt package also provides various scan functions (such as fmt.Scan(),
fmt.Scanf(), and fmt.Scanln()) for reading data from the console, from files,
and from strings. Some of these functions are used in Chapter 8 (§8.1.3.2,

*Go also has two built-in print functions, print () and println(). These should not be used; they exist
purely for the convenience of Go compiler implementers and may be removed from the language.
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» 380)—see also, Table 8.2 » 383). An alternative to using the scan functions
is to split each string into fields using the strings.Fields() function and then
convert those that aren’t strings to values (e.g., numbers) using functions from
the strconv package—see Tables 3.8 and 3.9 (» 114—-115). Recall from Chapter 1
that we can read input typed at the keyboard by creating a bufio.Reader to read
from os.Stdin and use the bufio.Reader.ReadString() function to read each line
entered (§1.7, 40 «).

The easiest way to output values is to use the fmt.Print() and fmt.Println()
functions (to print to os.Stdout, i.e., to the console), or the fmt.Fprint() and
fmt.Fprintf() functions to output to a given io.Writer (e.g., to a file), or the
fmt.Sprint() and fmt.Sprintln() functions to output to a string.

Table 3.3 The Fmt Package’s Print Functions

Syntax Description/result
fmt.Errorf(format,  Returnsan error value containing a string created with
args...) the format string and the args

Writes the args to the writer each using format %v and
space-separating nonstrings; returns the number of
bytes written, and an error or nil

fmt.Fprint(writer,
args...)

fmt.Fprintf(writer, Writes the args to the writer using the format string; re-
format, args...) turnsthe number of bytes written, and an error or nil

Writes the args to the writer each using format %v,
space-separated and ending with a newline; returns the
number of bytes written, and an error or nil

fmt.Fprintin(
writer, args...)

Writes the args to os.Stdout each using format %v and
fmt.Print(args...)  space-separating nonstrings; returns the number of
bytes written, and an error or nil

fmt.Printf(format,  Writes the args to os.Stdout using the format string; re-
args...) turns the number of bytes written, and an error or nil

Writes the args to os.Stdout each using format %v, space-
separated and ending with a newline; returns the num-
ber of bytes written, and an error or nil

fmt.Println(
args...)

Returns a string of the args, each formatted using

fmt.Sprint(args...) format %v and space-separating nonstrings

fmt.Sprintf(format, Returnsa string of the args formatted using the format
args...) string

fmt.Sprintin( Returns a string of the args, each formatted using
args...) format %v, space-separated and ending with a newline
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Table 3.4 The Fmt Package’s Verbs

Verbs are mostly used to output single values. If a valueis a slice the output is usually a
square bracket enclosed sequence of space-separated values, with each value formatted
as the verb specifies. If the valueis a map only %v or %#v may be used—unless the key and
value are of the same type, in which case type-compatible verbs may also be used.

Verb Description/result
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A literal % character

An integer value as a binary (base 2) number, or (advanced) a floating-
point number in scientific notation with a power of 2 exponent

An integer code point value as a Unicode character

An integer value as a decimal (base 10) number

A floating-point or complex value in scientific notation with e
A floating-point or complex value in scientific notation with E
A floating-point or complex value in standard notation

A floating-point or complex value using %e or %f, whichever produces the
most compact output

A floating-point or complex value using %E or %f, whichever produces the
most compact output

An integer value as an octal (base 8) number

A value’s address as a hexadecimal (base 16) number with a prefix of 0x
and using lowercase for the digits a—f (for debugging)

The string or []byte as a double-quoted string, or the integer as a single-
quoted string, using Go syntax and using escapes where necessary

The string or []byte as raw UTF-8 bytes; this will produce correct
Unicode output for a text file or on a UTF-8-savvy console

A bool value as true or false
A value’s type using Go syntax

An integer code point value using Unicode notation defaulting to four
digits; e.g., fmt.Printf("sU", '9') outputs U+00B6

A built-in or custom type’s value using a default format, or a custom
value using its type’s String() method if it exists

An integer value as a hexadecimal (base 16) number or a string or
[1byte value as hexadecimal digits (two per byte), using lowercase for
the digits a—f

An integer value as a hexadecimal (base 16) number or a string or
[1byte value as hexadecimal digits (two per byte), using uppercase for
the digits A—F
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Table 3.5 The Fmt Package’s Verb Modifiers

Modifier Description/result

Makes the verb output “-” before negative numbers and a space before
space  positive numbers or to put spaces between the bytes printed when
using the %x or %X verbs; e.g., fmt.Printf("% X", "<") outputs E2 86 92

Makes the verb use an “alternative” output format:
%#0 outputs octal with a leading 0
%#p outputs a pointer without the leading 0x
%#q outputs a string or []byte as a raw string (using backticks) if
possible—otherwise outputs a double-quoted string
%#v outputs a value as itself using Go syntax

%#x outputs hexadecimal with a leading 0x
%#X outputs hexadecimal with a leading 0X

Makes the verb output + or - for numbers, ASCII characters (with
others escaped) for strings, and field names for structs

- Makes the verb left-justify the value (the default is to right-justify)
0 Makes the verb pad with leading 0s instead of spaces

For numbers, makes the verb output a floating-point or complex
value using n (of type int) characters (or more if necessary to avoid
truncation) and with m (of type int) digits after the decimal point(s).

For strings n specifies the minimum field width, and will result in
space padding if the string has too few characters, and .m specifies the
maximum number of the string’s characters to use (going from left to
right), and will result in the string being truncated if it is too long.

Either or both of m and n can be replaced with * in which case their
values are taken from the arguments.

Either n or .m may be omitted.

type polar struct{ radius, 6 float64 }

p := polar{8.32, .49}

fmt.Print(-18.5, 17, "Elephant", -8+.7i, 0x3C7, '\u03C7', "a", "b", p)
fmt.Println()

fmt.Println(-18.5, 17, "Elephant", -8+.7i, 0x3C7, '\u@3C7', "a", "b", p)

-18.5-17Elephant (-8+0.71i) -967-967ab{8.32:0.49}
-18.5-17 Elephant- (-8+0.71) - 967967 -a-b-{8.32:0.49}

For the sake of clarity, particularly when multiple consecutive spaces are output,
we have put a light gray character (-) in the middle of every space shown.

The way that fmt.Print() and fmt.Fprint() handle whitespace is subtly different
from the fmt.Println() and fmt.Fprintln() functions. As a rule of thumb the
former are most useful for printing a single value or for “converting” a value to a
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string without error checking (use the strconv packages for proper conversions;
» 114-115), since they only output spaces between nonstring values. The latter
are better for printing multiple values, since they output a space between each
value and add a newline at the end.

Under the hood these functions use the %v (general value) format specifier—and
they can print any built-in or custom value without formality. For example, the
print functions know nothing about the custom polar type but still manage to
print a polar value successfully.

In Chapter 6 we will see how to provide a String() method for custom types; this
allows us to output them however we like. If we want to exercise similarly fine
control over the printing of built-in types we can use the print functions that
accept a format string as their first argument.

The format string used by the fmt.Errorf(), fmt.Printf(), fmt.Fprintf(), and
fmt.Sprintf() functions consists of one or more verbs—these are format speci-
fiers of the form %ML where M stands for one or more optional verb modifiers and L
stands for a particular verb letter. The verbs are listed in Table 3.4 (95 <). Some
of the verbs can accept one or more modifiers; the modifiers are listed in Table 3.5
(96 <.

We will now review some representative examples of format strings so that we
can get a clear understanding of how they work. In each case we will show a
tiny code snippet and then the output it produces.*

3.5.1. Formatting Booleans
Boolean values are output using the %t (truth value) verb.

fmt.Printf ("%t %t\n", true, false)

true: false

If we want to output Booleans as integers we must do the conversion our-
selves:

fmt.Printf("%d %d\n", IntForBool(true), IntForBool(false))
1-0

This makes use of a tiny custom function.

func IntForBool(b bool) int {
if b {

*C, C++, and Python 2 programmers will find Go’s format strings familiar—but with some subtle
differences. For example, Go’s %d can be used for any integer regardless of its size or signedness.
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return 1

}

return 0

}

We can convert a string back to a Boolean using the strconv.ParseBool() func-
tion. And, of course, there are similar functions for converting strings to num-
bers. (See §3.6.2,» 113.)

3.5.2. Formatting Integers

Now we will look at the formatting of integers, starting with binary (base 2)
output.

fmt. Printf("|%b|%9b|%-9b|%09b|% 9b|\n", 37, 37, 37, 37, 37)
[100101] - - -100101|100101- - - |000100101] - - 100101

The first format (%b) uses the %b (binary) verb and outputs an integer as a binary
number using as few digits as possible. The second format (%9b) specifies a width
of 9 characters (which will be exceeded if necessary to avoid truncation), and
uses the default right justification. The third format (%-9b) uses the - modifier to
get left justification. The fourth format (%09b) uses 0 padding and the fifth format
(% 9b) uses space padding.

Octal formatting is similar to binary, but also supports an alternative format. It
uses the %o (octal) verb.

fmt.Printf("|%0|%#0|%# 80|%#+ 80|%+080|\n", 41, 41, 41, 41, -41)
|51|051] 051| - - -+051|-0000051|
The alternative format is switched on by using the # modifier and causes a

leading 0 to be output. The + modifier forces the sign to be output—without it,
positive numbers are output without a sign.

Hexadecimal formatting uses the %x and %X (hexadecimal) verbs, the choice of
which specifies whether to use lowercase or uppercase letters for the digits A—F.
i :=3931
fmt.Printf("|%x|%X|%8x |%08x |%#04X|0x%04X|\n", i, i, i, i, i, i)
| f5b|F5B| f5b|00000f5h | ©XOF5B| 0xOF5B|

For hexadecimal numbers the alternate format modifier (#) causes a leading
0x or 0X to be output. As with all numbers, if we specify a width that is wider
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than needed, extra spaces are output to right-justify the number in the given
width—and if the width is too small the number is output in its entirety, so
there’s no risk of digits being truncated.

Decimal integers are output using the %d (decimal) verb. The only characters
that can be used for padding are spaces and zeros, but it is easy to pad with other
characters using a custom function.

i =569
fmt. Printf("|$%d|$%06d|$%+06d|$%s|\n", i, i, i, Pad(i, 6, '*'))

|$569| $000569 | $+00569 | $xx*569 |

For the last format we use the %s (string) verb to print a string since that’s what
our Pad() function returns.

func Pad(number, width int, pad rune) string {
s := fmt.Sprint(number)
gap := width - utf8.RuneCountInString(s)
if gap > 0 {
return strings.Repeat(string(pad), gap) + s
}
return s

}

The utf8.RuneCountInString() function returns the number of characters in
the given string; this is always less than or equal to the number of bytes. The
strings.Repeat() function takes a string and a count and returns a new string
that contains the given string repeated count times. We chose to pass the
padding character as a rune (i.e., as a Unicode code point) to avoid users of the
function passing a string which might contain more than one character.

3.5.3. Formatting Characters

Go characters are runes (i.e., int32s), and they can be output as numbers or as
Unicode characters.

fmt.Printf("%d %#04x %U '%c'\n", 0x3A6, 934, '\u03A6', '\UOOO0OO3A6')
934 -0x03a6°U+03A6- '@’
Here we have output the Greek capital letter Phi (‘®’) as decimal and hexadeci-

mal integers, as a Unicode code point using the %U (Unicode) verb, and as a Uni-
code character using the %c (character or code point) verb.
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3.5.4. Formatting Floating-Point Numbers

For floating-point numbers we can specify the overall width, the number of dig-
its after the decimal place—and whether to use standard or scientific notation.

for , x := range []float64{-.258, 7194.84, -60897162.0218, 1.500089e-8} {

fmt.Printf("[%20.5¢|%20.5F|%s|\n", X, X, Humanize(x, 20, 5, '*x', ','))
}
| -2.58000e-01]| —0.25800 | ¥***kkkkxxk%x—0, 25800 |
| 7.19484e+03 | 7194.84000 | xx*xk*kkk%7,194 . 84000 |
| -6.08972e+07 | -60897162.02180 | ***—60,897,162.02180 |
| 1.50009e-08| 0.00000 | **+xxxxxxxx%%%x0, 00000 |

Here we have used a for ... range loop to iterate over the numbersin a slice literal
of float64 items.

The custom Humanize() function returns a string representation of the number
it is given with grouping separators (for languages that use simple three-digit
groups) and padding.

func Humanize(amount float64, width, decimals int,
pad, separator rune) string {
dollars, cents := math.Modf(amount)
whole := fmt.Sprintf("%+.0f", dollars)[1:] // Strip "+"
fraction := ""
if decimals > 0 {
fraction = fmt.Sprintf("%+.+f", decimals, cents)[2:] // Strip "+0"
}
sep := string(separator)
for i := len(whole) - 3; 1> 0; i —=3 {
whole = whole[:i] + sep + whole[i:]

}
if amount < 0.0 {

whole = "-" + whole
}

number := whole + fraction
gap := width - utf8.RuneCountInString(number)
if gap > 0 {
return strings.Repeat(string(pad), gap) + number
}
return number

}

The math.Modf () function returns the whole and fractional parts of a float64 as
two float64s. To get the whole part as a string we use the fmt.Sprintf() function
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with a format that forces the sign to be output and then we immediately slice
the string to strip off the sign. We use a similar technique for the fractional
part, only this time we use the . m verb modifier specifying the number of decimal
digits to use with a * placeholder. (So in this case, if decimals has the value 2 the
format effectively becomes %+.2f.) For the fractional part we strip off the leading
-0 or +0.

The grouping separators are inserted from right to left in the whole string and
then a - sign is added if the number is negative. At the end we concatenate the
whole and fractional parts and return the result—padding if required.

The %e, %E, %f, %9, and %G verbs can be used with complex numbers as well as
with floating-point numbers. The %e and %E are the scientific format (exponen-
tial) verbs, %f is the floating-point verb, and %g and %G are the general floating-
point verbs.

One factor to keep in mind, though, is that the modifiers are applied to both
the real and imaginary parts of complex numbers individually—for example,
a format of %6f will produce a result occupying at least 20 characters if the
argument is a complex number.

for , x := range []complex128{2 + 3i, 172.6 - 58.30191,
-.827e2 + 9.04831e-3i} {
fmt.Printf("|%155|%9.3f|%.2f|%.1le[\n",

fmt.Sprintf("%6.2f%+.3fi", real(x), imag(x)), X, X, X)

}

|- 2.00+3.0001| (- 2.000 - +3.0001)|(2.00+3.00i)|(2.0e+00+3.0e+001) |
| 1172.60-58.3021| (- -172.600- --58.3021) | (172.60-58.301) | (1.7e+02-5.8e+011) |
|- -82.70+0.0091| (- --82.700- - -+0.0091) | (-82.70+0.011i) | (-8.3e+01+9.0e-031) |

For the first column of complex numbers we wanted the components to have
different numbers of digits after the decimal place. To achieve this we formatted
the real and imaginary parts individually using fmt.Sprintf(), and then output
the result formatted as a string using a format of %15s. For the other columns
we used the %f and %e verbs directly—these always put parentheses around
complex numbers.

3.5.5. Formatting Strings and Slices

Strings can be output with a minimum field width (which the print functions
will pad with spaces if the string is too short), and with a maximum number of
characters (which will result in truncation for any string that’s too long). Strings
can be output as Unicode (i.e., characters), or as a sequence of code points (i.e.,
runes) or as the UTF-8 bytes that represent them.
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slogan := "End Oréttlativ"
fmt.Printf("%ss\n%g\n%+g\n%#g\n", slogan, slogan, slogan, slogan)

End Oréttlativ

"End Oréttlativ"

"End \u00d3r\u00e9ttl\ub0e6ti\u2665"
“End Oréttlativ’

The %s verb is used to print strings; we will return to it in a moment. The %q
(quoted string) verb is used to print a string as a Go double-quoted string with
printable characters printed literally, and with all other characters output using
escapes (see Table 3.1, 84 «). If the + modifier is used, only ASCII characters
(U+0020 to U+007E) are printed literally, with the rest output using escapes. If the
# modifier is used the output is a Go raw string where possible, and a double-
quoted string otherwise.

Although normally the variable corresponding to a verb is a single value of a
compatible type (e.g., an int for the %d verb or for the %x verb), the variable can
also be a slice—or a map, providing the map’s key and value are both compatible
with the verb (e.g., both strings or both numbers).

chars := []rune(slogan)
fmt.Printf("sx\n%s#x\n%#X\n", chars, chars, chars)

[45-6e:64:20:d3:72:€9:74:74-6¢-e6:74:69:2665]
[0x45 - 0x6e:0x64 - 0x20 - 0xd3:0x72-0xe9:0x74:0x74 - 0x6¢  0xeb:0x74 - 0x69:0x2665]
[0X45 - OX6E - 0X64 - 0X20 - 0XD3 - 0X72 - OXE9 - 0X74 - 0X74 - 0X6C - OXE6 - 0X74 - 0X69 - 0X2665]

Here we print a slice of runes—in this example, a slice of code points—as a se-
quence of hexadecimal numbers, one per code point, using the %x and %X verbs. If
the # modifier is used it forces a leading 0x or 0X to be output for each number.

For most types, slices of the type are output as a square bracket enclosed
sequence of space-separated items. An exceptionis []byte where no brackets or
spaces are output unless we use the %v verb.

bytes := []byte(slogan)
fmt.Printf("%s\n%x\n%X\n% X\n%v\n", bytes, bytes, bytes, bytes, bytes)

End - Oréttlativ

456e6420¢39372¢3a974746cc3a67469e299a5
456E6420C39372C3A974746CC3A67469E299A5
45-6E-64:20:C3:93:72:C3:A9:74:74-6C-C3:A6:74:69-E2:99-A5
[69:110-100:32:195:147-114-195-169 116-116°108-195-166-116-105:226-153-165]
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A slice of bytes—here, the UTF-8 bytes that represent a string—can be printed
as a sequence of two-digit hexadecimal numbers, one per byte. If we use the %s
verb the bytes are assumed to be UTF-8-encoded Unicode and are printed as a
string. There is no alternative hexadecimal format for []bytes, but the numbers
can be space-separated as the penultimate output line illustrates. The %v verb
outputs []bytes as a square bracket enclosed sequence of space-separated
decimal values.

Go right-aligns by default; we can left-align using the - modifier. And, of course,
we can specify a minimum field width and the maximum number of characters
to output as the next two examples illustrate.

s := "Dare to be naive"
fmt.Printf("|%22s|%-225|%10s|\n", s, S, S)

| Dare-to-be-naive|Dare-to-be-naive |Dare-to-be-naive|

In this snippet, the third format (%10s) specifies a minimum field width of 10
characters, but since the string is longer than this—and the field width is a
minimum—the string is printed in full.

i := strings.Index(s, "n")
fmt.Printf("|%.10s|%.*5|%-22.10s|%s|\n", s, i, S, S, S)

|Dare-to-be|Dare-to-be: |Dare-to-be |Dare-to-be-naive|

Here, the first format (%.10s) specifies that a maximum of 10 characters from
the string may be output, so in this case the string is truncated to the specified
width. The second format (%.*s) expects to get two arguments—the maximum
number of characters to print and a string; here we have used the index position
of the string’s n character for the maximum which means that all the characters
up to but excluding that character are printed. The third format (%-22.10s)
specifies both a minimum field width of 22 characters and a maximum number
of characters to print of 10 characters—this means that only the string’s first 10
characters are printed, but in a field that is 22 characters wide. Since the field
width is greater than the number of characters to print, the field is padded with
spaces—and left-justified because of the - modifier.

3.5.6. Formatting for Debugging

The %T (type) verb is used to print a built-in or custom value’s type, and the %v
verb is used to print a built-in value’s value. In fact, %v can also print the value
of custom types, using a default format for types that do not have a String()
method defined, or using the type’s String() method if it has one.
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p := polar{-83.40, 71.60}

fmt.Printf("[%T|%v|%#v|[\n", p, p, P)

fmt.Printf("|%T|%v|%t|\n", false, false, false)

fmt.Printf (" |%T|%v|%d|[\n", 7607, 7607, 7607)
]

fmt.Printf("|%T|%v|%f|\n", math.E, math.E, math.E)
fmt.Printf("|%T|%v|%f|\n", 5+7i, 5+7i, 5+7i)

s := "Relativity"
fmt.Printf (" [ST|\"sv\"|\"%s\"|%q|\n", s, S, S, S)

|main.polar|{-83.4-71.6} |main.polar{radius:-83.4, 6:71.6}|
|bool|false|false|

|int|7607|7607 |

| float64|2.718281828459045(|2.718282|

| complex128| (5+71) | (5.000000+7.0000001) |
|string|"Relativity"|"Relativity"|"Relativity"|

This example shows how to output an arbitrary value’s type and value using %T
and %v. If the %v verb’s formatting is satisfactory we can simply use fmt.Print()
and similar functions since these use the %v verb’s format by default. Using the
# alternative format verb modifier with %v affects only struct types and causes
them to be output with their type name and field names. For floating-point
values, %v formats like the %g verb rather than like the %f verb. The %T format is
mostly useful for debugging and includes the package name (in this case main)
for custom types. Using the %q verb for strings puts them in quotes which is often
convenient when debugging.

Two of Go’s types have synonyms: byte for uint8 and rune for int32. Use int32
when handling 32-bit signed integers where int won’t do (e.g., reading/writing
binary files), and rune for Unicode code points (characters).

s := "AliaseSynonym"

chars := []rune(s)

bytes := []byte(s)

fmt.Printf("sT: %v\n%T: %v\n", chars, chars, bytes, bytes)

[1int32: [65 108 105 97 115 8596 83 121 110 111 110 121 109]
[luint8: [65 108 105 97 115 226 134 148 83 121 110 111 110 121 109]

As the code snippet illustrates, the %T verb always prints the original type name,
not the synonym. Since the string has a non-ASCII character it is clear that we
have a slice of runes (code points) and a slice of UTF-8-encoded bytes.

Go can also output any value’s address in memory using the %p (pointer) verb.

5
-48.3124

i
f .
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s := "Tomas Breton"
fmt.Printf("|%p - %d|%p - %f|%#p - %s|\n", &i, i, &f, f, &s, s)

|6xf840000300 - 5|0xf840000308 - -48.312400| f840001990 - Tomas -Bretodn |

The & address of operator is explained in the next chapter (§4.1, » 140). If
we use the %p verb with the # modifier, the address’s leading 0x is dropped.
Outputting memory addresses like this can be useful when debugging.

Go’s ability to output slices and maps is also useful for debugging, as is the
ability to output channels—that is, the type that can be sent and received
through the channel and the channel’s memory address.

fmt.Println([]float64{math.E, math.Pi, math.Phi})
fmt.Printf("%sv\n", []float64{math.E, math.Pi, math.Phi})
fmt.Printf("%#v\n", []1float64{math.E, math.Pi, math.Phi})
fmt.Printf("%.5f\n", []1float64{math.E, math.Pi, math.Phi})

[2.7182818284590453.141592653589793-1.618033988749895]
[2.7182818284590453.141592653589793-1.618033988749895]
[1float64{2.718281828459045, -3.141592653589793, - 1.618033988749895}
[2.71828:3.14159-1.61803]

Using the unmodified %v verb, slices are output as square bracket enclosed
sequences of space-separated items. Usually we output them using functions
like fmt.Print() or fmt.Sprint(), but if we use a formatting output function then
the usual verb to use is %v or %#v. However, we can also use a type-compatible
verb such as %f for floating-point numbers or %s for strings.

fmt.Printf("%q\n", []string{"Software patents", "kill", "innovation"})
fmt.Printf("%sv\n", []string{"Software patents", "kill", "innovation"})
fmt.Printf("%s#v\n", [Istring{"Software patents", "kill", "innovation"})
fmt.Printf("%17s\n", []lstring{"Software patents", "kill", "innovation"})

["Software-patents" "kill"-"innovation"]
[Software:patents-kill-innovation]
[Istring{"Software:patents", "kill", - "innovation"}
[-Software:patents kill innovation]

Using the %q verb for outputting slices of strings is particularly useful when
the strings contain spaces since it makes each individual string identifiable—
something that doesn’t happen if we use the %v verb.

The last output might look wrong at first sight since it occupies 53 characters
(not including the enclosing square brackets) rather than 51 (three strings of
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17 characters, none of which is too big). The apparent discrepancy is due to the
space separator that is output between each slice item.

In addition to debugging, the %#v verb may be useful when generating Go code
programmatically.

fmt.Printf("%sv\n", map[int]string{l: "A", 2: "B", 3: "C", 4: "D"})
fmt.Printf("%#v\n", map[int]string{1l: "A", 2: "B", 3: "C", 4: "D"})
fmt.Printf("sv\n", map[int]int{1l: 1, 2: 2, 3: 4, 4: 8})
fmt.Printf("%#v\n", map[int]lint{1l: 1, 2: 2, 3: 4, 4: 8})
fmt.Printf("%04b\n", map[int]int{l: 1, 2: 2, 3: 4, 4: 8})

map[4:D-1:A-2:B-3:(C]

map[int] string{4:"D", 1:"A",-2:"B",-3:"C"}
map[4:8:1:1:2:2-3:4]

map[int] int{4:8, 1:1,:2:2, 3:4}
map[0100:1000 0001:0001:0010:0010:0011:0100]

Maps are output as the word “map”, and then the map’s key—value pairs (in an
arbitrary order since maps are unordered). Just as with slices it is possible to
use verbs other than %Sv—but only if both the key and value are compatible with
the verb used, as in the example’s last statement. (Maps and slices are covered
in detail in Chapter 4.)

The fmt package’s print functions are very versatile and can be used to print
whatever output we need. The only feature not offered by the package’s func-
tions is padding with a particular character (other than zeros or spaces), but as
we saw in the custom Pad() (99 <) and Humanize() (100 <) functions, this is very
easy to do.

3.6. Other String-Related Packages

Go’s considerable support for strings doesn’t stop at indexing and slicing, or with
the versatile fmt package’s functions. The strings packagein particular provides
very rich functionality, and the strconv, unicode/utf8, and unicode packages also
provide lots of useful functions. Examples that make use of functionality from
all these packages are presented in this section. Regular expressions—provided
by the powerful regexp package introduced later in this section—are used in
several examples throughout the book.

There are other packages in the standard library that provide string-related
functionality, and some of them are covered elsewhere in the book either in
examples or in exercises.
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3.6.1. The Strings Package

A common requirement in string processing is to be able to split a string into a
slice of separate strings and then do further processing—for example, convert
strings to numbers or trim whitespace.

To get a flavor of how to use some of the strings package’s functions we will
review some tiny examples that show some of the functions in use. All the
package’s functions are listed in Tables 3.6 and 3.7 (» 108—109). Let’s start with
splitting strings.

names := "NiccoloeNoéleGeoffreyeAmélieeTurlougheJosé"

fmt.Print("|")

for , name := range strings.Split(names, "°*") {
fmt.Printf("%s|", name)

}
fmt.Println()

[Niccolo|Noél|Geoffrey|Amélie| |Turlough|José|

Here we have a bullet-separated list of names (including one blank field) which
we split using the strings.Split() function. This function takes a string to
split and a separator string to split on and does as many splits as possible. (If
we want to limit the number of splits we can use the strings.SplitN() function
instead.) If we used the strings.SplitAfter() function the output would look
like this:

[Niccoloe|[Noéle|Geoffreye|Améliee|e|Turloughe|José|

The strings.SplitAfter() function performs the same splits as the strings.
Split() function but keeps the separator. There is also a strings.SplitAfterN()
function for when we want to split a specific number of times.

If we need to be able to split on any of two or more different characters we can
use the strings.FieldsFunc() function.

for , record := range []string{"lLaszlo Lajtha*1892+1963",
"Edouard Lalo\t1823\t1892", "José Angel Lamas|1775|1814"} {
fmt.Printin(strings.FieldsFunc(record, func(char rune) bool {
switch char {
case '\t', 'x', '|":
return true
}

return false

})
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Table 3.6 The Strings Package’s Functions #1

Variables s and t are of type string, xs is of type [lstring, i is of type int, and f is a
function with the signature func(rune) bool. Index positions are of the first UTF-8 byte of
the matching Unicode code point (character) or string, or -1 when there isn’t a match.

Syntax
strings.Contains(s, t)
strings.Count(s, t)
strings.EqualFold(s, t)
strings.Fields(s)
strings.

FieldsFunc(s, f)
strings.HasPrefix(s, t)
strings.HasSuffix(s, t)
strings.Index(s, t)
strings.IndexAny(s, t)

strings.
IndexFunc(s, f)

strings.
IndexRune(s, char)

strings.Join(xs, t)
strings.LastIndex(s, t)

strings.
LastIndexAny(s, t)
strings.
LastIndexFunc(s, f)

strings.Map(mf, t)

strings.NewReader(s)

strings.NewReplacer(...

strings.Repeat(s, 1)

Description/result

true if t occursin s

How many (nonoverlapping) times t occurs in s
true if the strings are case-insensitively equal

The []string that results in splitting s on white-
space

The []string that results in splitting s at every
character where f returns true

true if s starts with t

true if s ends with t

The index of the first occurrence of t in s

The first index in s of any character that isin t
The index of the first character in s for which f

returns true

The index of the first occurrence of character char
of type rune in s

A string containing the concatenation of all the
strings in xs, each separated by t (which can be

")

The index of the last occurrence of t in s
The last index in s of any character that isin t

The index of the last character in s for which f
returns true

A copy of t with every character replaced or delet-
ed according to the mapping function mf with the
signature func(rune) rune (see text)

A pointer to a value that provides Read(), Read-
Byte(), and ReadRune() methods that operate on s
A pointer to a value that has methods for replacing
each pair of old, new strings it is given

A string consisting of i concatenations of s



3.6. Other String-Related Packages 109

Table 3.7 The Strings Package’s Functions #2

Variable r of type unicode.SpecialCase is used to specify Unicode rules (advanced).

Syntax

strings.Replace(s,
old, new, 1)

strings.Split(s, t)

strings.
SplitAfter(s, t)
strings.
SplitAfterN(s, t, 1)

strings.SplitN(s, t, 1)

strings.Title(s)

strings.ToLower(s)

strings.
ToLowerSpecial(r, s)

strings.ToTitle(s)

strings.
ToTitleSpecial(r, s)
strings.ToUpper(s)
strings.
ToUpperSpecial(r, s)

strings.Trim(s, t)

strings.
TrimFunc(s, f)
strings.
TrimLeft(s, t)
strings.
TrimLeftFunc(s, f)
strings.
TrimRight(s, t)
strings.
TrimRightFunc(s, f)
strings.

TrimSpace(s)

Description/result

A copy of s with every nonoverlapping occurrence
of string old replaced by string newif i is -1, or with
at most i replacements otherwise

The []string that resultsin splitting s on t as many
times as t occursin s

Works like strings.Split() only the separator is
kept in the resultant strings (see text)

Works like strings.SplitN() only the separator is
kept in the resultant strings

The []string that results in splitting son t, i -

1 times

A copy of s with the first letter of every word title-
cased

A lowercased copy of s

A lowercased copy of s, prioritizing the rules in

r (advanced)

A title-cased copy of s

A title-cased copy of s, prioritizing the rulesin r
(advanced)

An uppercased copy of s

An uppercased copy of s, prioritizing the rules in

r (advanced)

A copy of s with the characters in t removed from
both ends

A copy of s with the characters for which f returns
true removed from both ends

A copy of s with the characters in t removed from
the start

A copy of s with the characters for which f returns
true removed from the start

A copy of s with the characters in t removed from
the end

A copy of s with the characters for which f returns
true removed from the end

A copy of s with whitespace removed from both
ends
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[Lész16- Lajtha 1892 1963]
[Edouard-Lalo-1823-1892]
[José Angel-Lamas 1775 1814]

The strings.FieldsFunc() function takes a string (the record variable in this ex-
ample) and a reference to a function with the signature func(rune) bool. Since
the function is so tiny and is used only in one place, we have created it as an
anonymous function at the point it is needed. (Functions created this way are
closures, although in this particular case we make no use of the enclosed state;
see §5.6.3, » 225.) The strings.FieldsFunc() function iterates over every char-
acter in the string it is given and calls the function it is passed as its second
argument with each character. If the called function returns true a split is per-
formed. Here we have said that the string should be split on tabs, stars, and
vertical bars. (Go’s switch statement is covered in §5.2.2, » 195.)

We can replace all occurrences of a string within a string using the strings.
Replace() function. For example:

names = " Antdnio\tAndré\tFriedrich\t\t\tJean\t\tElisabeth\tIsabella \t"
names = strings.Replace(names, "\t", " ", -1)
fmt.Printf("[%s|\n", names)

| ‘Antonio-André- -Friedrich- - -Jean- -Elisabeth:Isabella - |

The strings.Replace() function takes a string to work on, a substring to find,
a replacement string, and the number of replacements to make (-1 meaning as
many as possible), and returns a string with all the (nonoverlapping) replace-
ments performed.

When reading a string that has been entered by a human or that has come from
an external source we often want to normalize its whitespace: that is, to get rid
of any leading and trailing whitespace and replace each internal sequence of
one or more whitespace characters with a single space.

fmt.Printf("|%s|\n", SimpleSimplifyWhitespace(names))
|Antdnio-André Friedrich-Jean:Elisabeth Isabella|
Here is a one-line SimpleSimplifyWhitespace() function.
func SimpleSimplifyWhitespace(s string) string {

return strings.Join(strings.Fields(strings.TrimSpace(s)), " ")

}
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The strings.TrimSpace() function returns a copy of the string it is passed with
any leading and trailing whitespace stripped off. The strings.Fields() function
splits a string on any amount of whitespace and returns a []string. And the
strings.Join() function takes a []string and a separator (which could be an
empty string, although here we have used a space), and returns a single string
with all the []string’s strings joined by the separator. By using these three
functions in this combination we get whitespace normalization.

Of course, we can more efficiently simplify whitespace doing a single pass using
a bytes.Buffer.

func SimplifyWhitespace(s string) string {
var buffer bytes.Buffer
skip := true
for , char := range s {

if unicode.IsSpace(char) {

if !skip {
buffer.WriteRune(' ')
skip = true

}

} else {
buffer.WriteRune(char)
skip = false

}

}

s = buffer.String()

if skip && len(s) > 0 {
s = s[:len(s)-1]

}

return s

}

The SimplifyWhitespace() function iterates over the characters in the string it
receives, skipping any leading whitespace using the unicode.IsSpace() function
(Table 3.11, » 119). Then, it accumulates characters by writing them into a
bytes.Buffer and for any sequence of one or more internal whitespaces it writes
a single space. At the end any trailing space is stripped off (the algorithm allows
at most one), and the resultant string is returned. A much simpler version using
regular expressions is shown later (> 128).

The strings.Map() function can be used to replace or remove characters from
strings. It takes two arguments, the first a mapping function with the signature
func(rune) rune and the second a string. The mapping function is called for
every character in the string and each character is replaced by the character
returned by the function—or deleted if the mapping function returns a negative
number.
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asciiOnly := func(char rune) rune {
if char > 127 {
return '7'
}
return char

}

fmt.Println(strings.Map(asciiOnly, "Jérome Osterreich"))

J?r?me: ?sterreich

Here, instead of creating the mapping function at the call site as we did with the
strings.FieldsFunc() example shown earlier (107 <), we have created an anony-
mous mapping function and assigned (a reference to) it to a variable (asciiOn-
ly). We have then used the strings.Map() function, passing it the variable that
refers to the mapping function and the string we want to process and printing
the result—a string with all non-ASCII characters replaced by “?”. We could, of
course, have created the mapping function at the call site, but doing it separately
as we have done here is more convenient if the function being passed is long, or
if we will need to use it more than once.

It is easy to use this approach to delete non-ASCII characters and produce:
Jrme: sterreich

This is achieved by changing the mapping function to return -1 instead of ? for
non-ASCII characters.

We have mentioned previously that it is possible to iterate over every character
(Unicode code point) in a string using a for ... range loop (§5.3, » 203). A similar
effect can be achieved when reading data from types that implement the
ReadRune () function, such as the bufio.Reader.

for {
char, size, err := reader.ReadRune()
if err !'= nil { // might occur if the reader is reading a file
if err == i0.EOF { // finished without incident
break
}
panic(err) // a problem occurred

}

fmt.Printf("sU '%c' %d: % X\n", char, char, size, []lbyte(string(char)))
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U+0043-'C'-1:-43
U+0061 - 'a'-1:-61
U+0066- 'f'-1:-66
U+BOE9- 'é'-2:-C3-A9

This code snippet reads a string and outputs each character’s code point, the
character itself, how many UTF-8 bytes the character occupies, and the bytes
used to represent the character. In most cases readers operate on files, so here
we might imagine that the reader variable was created by calling bufio.New-
Reader() on the reader returned by an os.0pen() call—something we saw in the
first chapter’s americanise example (§1.6, 29 «). However, in this case the reader
was created to operate on a string:

reader := strings.NewReader("Café")

The *strings.Reader returned by strings.NewReader () offers a subset of the func-
tionality of a bufio.Reader; in particular it provides the strings.Reader.Read(),
strings.Reader.ReadByte(), strings.Reader.ReadRune(), strings.Reader.Unread-
Byte(), and strings.Reader.UnreadRune() methods. The ability to operate on val-
ues that have a particular interface (e.g., provide a ReadRune() method), rather
than on values of particular types, is a very powerful and flexible feature of Go,
and is covered much more fully in Chapter 6.

3.6.2. The Strconv Package

The strconv package provides many functions for converting strings into oth-
er types and other types into strings. The package’s functions are listed in Ta-
bles 3.8 and 3.9 (> 114-115; see also the fmt package’s print and scan functions,
§3.5,93 « and §8.2, » 383.) Here we will review a few illustrative examples.

One common requirement is to convert a string representation of a truth value
into a bool. This can be done using the strconv.ParseBool() function.

for , truth := range []string{"1", "t", "TRUE", "false", "F", "0", "5"} {
if b, err := strconv.ParseBool(truth); err !'= nil {
fmt.Printf("\n{%v}", err)
} else {
fmt.Print(b, " ")
}

}
fmt.Println()

true-true-true-false-false:false
{strconv.ParseBool: parsing:"5": invalid-syntax}
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Table 3.8 The Strconv Package’s Functions #1

Parameter bs is a [1byte, base is a number base (2-36), bits is the bit size the result must
fit into (8, 16, 32, 64—or 0 for int’s size for ints; 32 or 64 for float64s), and s is a string.

Syntax
strconv.AppendBool(bs, b)
strconv.AppendFloat(bs, f,

fmt, prec, bits)

strconv.AppendInt(bs, 1,
base)

strconv.AppendQuote(bs, s)

strconv.AppendQuote-
Rune(bs, char)

strconv.AppendQuote-
RuneToASCII(bs, char)

strconv.AppendQuote-
ToASCII(bs, s)

strconv.AppendUInt(bs, u,
base)

strconv.Atoi(s)

strconv.CanBackquote(s)

strconv.FormatBool(tf)

strconv.FormatFloat (f,
fmt, prec, bits)

strconv.FormatInt(i, base)
strconv.FormatUInt(u, base)

strconv.IsPrint(c)

strconv.Itoa(i)

Description/result
bs with "true" or "false" appended depending
on bool b

bs with float64 f appended; see strconv.Format-
Float() for the other parameters

bs with int64 i appended using the given base

bs with s appended using strconv.Quote()

bs with rune char appended using strconv.
QuoteRune()

bs with rune char appended using strconv.
QuoteRuneToASCII()

bs with s appended using strconv.QuoteTo-
ASCII()

bs with uint64 u appended using the given base

string s converted to an int,and an error or nil;
see also strconv.ParseInt()

true if s can be represented in Go syntax using
backticks

"true" or "false" depending on bool tf

float64 f as a string. The fmt is a byte corre-
sponding to an fmt.Print() verb, 'b' for %b, 'e’
for %e, etc. (see Table 3.4, 95 «). The prec is the
number of digits after the decimal point for an
fmt of 'e', 'E', and 'f'; or the total number of
digits for a fmt of 'g' and 'G'—use -1 to request
the smallest number of digits that can be used
while preserving accuracy going the other way
(e.g., using strconv.ParseFloat()). The bits af-
fects rounding and is usually 64.

int64 i as a string in base base
uint64 v as a string in base base
true if rune c is a printable character

int i as a string using base 10; see also strconv.
FormatInt()
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Table 3.9 The Strconv Package’s Functions #2

Syntax

strconv.ParseBool(s)

strconv.ParseFloat(
s, bits)

strconv.ParseInt(
s, base, bits)

strconv.Parselint(
s, base, bits)

strconv.Quote(s)

strconv.QuoteRune(
char)

strconv.QuoteRune-
ToASCII(char)

strconv.
QuoteToASCII(s)

strconv.Unquote(s)

strconv.
UnquoteChar(s, b)

Description/result

trueand nilif sis "1","t", "T", "true", "True", or "TRUE";
false and nilif sis "@","f", "F", "false", "False", or
"FALSE"; false and an error otherwise

A float64 and nil if s is parseable as a floating-point
number, or 0 and an error; bits should be 64;but use 32
if converting to a float32

An int64 and nil if s is parseable as an integer, or 0 and
an error; a base of 0 means the base will be deduced
from s (a leading "0x" or "0X" means base 16, a leading
"0" means base 8; otherwise base 10), or a specific base
(2-36) can be given; bits should be 0 if converting to an
int or the bit size if converting to a sized integer (e.g.,
16 for an int16)

A uint64 and nil or 0 and an error—just the same as
strconv.Parselnt() apart from being unsigned

A string using Go’s double-quoted string syntax to
represent string s; see also Table 3.1 (83 <)

A string using Go’s single-quoted string syntax to
represent Unicode code point char of type rune

A string using Go’s single-quoted string syntax to
represent Unicode code point char of type rune, using
an escape sequence for a non-ASCII character

A string using Go’s double-quoted string syntax to rep-
resent string s, using escape sequences for non-ASCII
characters

A string that contains the Go syntax single-quoted
character or double-quoted or backtick-quoted string
in string s and an error

A rune (the first character), a bool (whether the first
character’s UTF-8 representation needs more than one
byte), a string (the rest of the string), and an error;

if b is set to a single or double quote that quote must
be escaped
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All the strconv conversion functions return the converted value and an error,
with the latter being nil if the conversion succeeded.

X, err := strconv.ParseFloat("-99.7", 64)
fmt.Printf("%8T %6v %v\n", x, X, err)

y, err := strconv.ParseInt("71309", 10, 0)
fmt.Printf("%8T %6v %v\n", y, y, err)

z, err := strconv.Atoi("71309")
fmt.Printf("%8T %6v %v\n", z, z, err)

float64  --99.7 <nil>
int64- 71309 <nil>
int--71309 <nil>

The strconv.ParseFloat(), strconv.ParseInt(), and strconv.Atoi() (“ASCII to
int”) functions shown here work much as we would expect. The call strconv.
Atoi(s) is almost the same as strconv.Parselnt(s, 10, 0), that is, parse the given
string as a base-ten integer and return an integer, only Atoi() returns an int
and ParseInt() returns an int64. As we would expect, the strconv.Parselint()
function converts to an unsigned integer type and will fail if there’s a lead-
ing minus sign in the string it is given. These functions will fail if there is
any leading or trailing whitespace, but we can easily eliminate this with the
strings.TrimSpace() function or by using the fmt package’s scan functions (Ta-
ble 8.2, » 383). Naturally, the floating-point conversions will accept strings that
use standard or exponential notation, such as "984", "424.019", and "3.916e-12".

s := strconv.FormatBool(z > 100)

fmt.Println(s)

i, err := strconv.ParseInt("OxDEED", 0, 32)
fmt.Println(i, err)

j, err := strconv.ParseInt("0707", 0, 32)
fmt.Println(j, err)

k, err := strconv.ParseInt("10111010001", 2, 32)

true

57069 <nil>
455-<nil>
1489 - <nil>

The strconv.FormatBool() function returns a string representing the Boolean ex-
pressionitisgiven as "true" or "false". The strconv.ParseInt() function converts
an integer in string form into an int64. The second argument is the base to use,
with 0 meaning use the base implied by the string’s prefix: "0x" or "0X" for hex-
adecimal, "0" for octal, and decimal otherwise. In this snippet we have converted
a hexadecimal and an octal number using their implied base and a binary num-
ber by specifying an explicit base of 2. Valid bases are 2 to 36 inclusive with bases
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higher than 10 representing 10 with A (or a) and so on. The third argument is
the bit size (with 0 signifying the size of an int), so although the function always
returns an int64, the conversion will only succeed if it can be converted perfectly
to an integer of the given bit size.

i := 16769023

fmt.Println(strconv.Itoa(i))
fmt.Println(strconv.FormatInt(int64(i), 10))
fmt.Println(strconv.FormatInt(int64(i), 2))
fmt.Println(strconv.FormatInt(int64(i), 16))

16769023

16769023
111111111101111111111111
ffdfff

The strconv.Itoa() (“Integer to ASCII”) function returns a string representing
its int argument in base 10. The strconv.FormatInt() function formats an int64
as a string using the given base (which must be specified, and must be between
2 and 36 inclusive).

s = "Alle gnsker 3 vare fri."
quoted := strconv.Quote(s)
fmt.Println(quoted)
fmt.Printin(strconv.Unquote(quoted))

"Alle-\u60f8nsker-\u@Oe5-v\ub0ebre: fri."

Alle gnsker-a:vare: fri. <nil>

The strconv.Quote() function returns the string it is given as a Go double-quoted
string and with any nonprintable ASCII characters and any non-ASCII char-
acters represented using escapes. (Go’s string escapes are shown in Table 3.1,
84 «.) The strconv.Unquote() function takes a string containing a Go double-
quoted string or a raw (backtick-quoted) string or a single-quoted character, and
returns the unquoted string equivalent and an error (or nil).

3.6.3. The Utf8 Package

The unicode/utf8 package provides several useful functions for querying and
manipulating strings and []bytes which hold UTF-8 bytes—many of these are
shown in Table 3.10. Earlier we saw how to use the utf8.DecodeRuneInString()
and utf.DecodelLastRuneInString() functions (91 «) to get the first and last
characters in a string.
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Table 3.10 The Utf8 Package’s Functions

Import "unicode/utf8". Variableb is type [ 1byte, s is of type string, and c is a Unicode code
point of type rune.

Syntax Description/result

utf8 The last rune in b and the number of bytes it occupies, or

DecodeLastRune (b) U+FFFD’ (the Ur}lcode replacement character, @) and 0, if b
doesn’t end with a valid rune

utf8.DecodelLast- The same as utf8.DecodeLastRune(), only it takes a string

RuneInString(s) as input

The first rune in b and the number of bytes it occupies, or
utf8.DecodeRune(b)  U+FFFD (the Unicode replacement character, @) and 0, if b
doesn’t start with a valid rune

utf8.DecodeRune- The same as utf8.DecodeRune(), only it takes a string
InString(s) as input

utf8.EncodeRune( Writes c into b as UTF-8 bytes and returns the number of
b, ¢) bytes written (b must have enough space)
utf8.FullRune(b) true if b begins with a UTF-8-encoded rune
utf8.FullRune-
InString(b)
utf8.RuneCount(b) Same as utf8.RuneCountInString() but works on a []byte

true if s begins with a UTF-8-encoded rune

utf8.RuneCount- The number of runes in s; this may be less than len(s) if
InString(s) s contains non-ASCII characters

utf8.RunelLen(c) The number of bytes needed to encode ¢
utf8.RuneStart(x)  true if byte x could be the first byte of a rune
utf8.valid(b) true if b’s bytes represent valid UTF-8-encoded runes

utf8.validString(s) true if s’s bytes represent valid UTF-8-encoded runes

3.6.4. The Unicode Package

The unicode package provides functions for querying Unicode code points to
determine if they meet certain criteria—for example, whether the character
they represent is a digit or a lowercase letter. Table 3.11 shows the most com-
monly used functions. In addition to those functions we would expect, such as
unicode.ToLower() and unicode.IsUpper(), a generic unicode.Is() function is pro-
vided so that we can check whether a character is in a particular Unicode cate-

gory.
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Table 3.11 The Unicode Package’s Functions

Variable c is of type rune and represents a Unicode code point.

Syntax
unicode

JIs(

table, c)

unicode

unicode

unicode

unicode
unicode
unicode
unicode

.IsControl(c)
.IsDigit(c)

.IsGraphic(c)

.IslLetter(c)
.IsLower(c)
.IsMark(c)
.IsOne0f (

tables, c)

unicode.

unicode

unicode.
unicode.

unicode.

unicode

unicode.

unicode.

IsPrint(c)
.IsPunct(c)
IsSpace(c)
IsSymbol(c)
IsTitle(c)
.IsUpper(c)
SimpleFold(c)
To(

case, ¢)

unicode
unicode

unicode

.ToLower(c)
.ToTitle(c)
.ToUpper(c)

Description/result
true if ¢ is in the table (see text)

true if ¢ is a control character
true if c is a decimal digit

true if c is a “graphic” character such as a letter, num-
ber, punctuation mark, symbol, or space

true if c is a letter
true if ¢ is a lowercase letter

true if ¢ is a mark character
true if ¢ is in one of the tables

true if ¢ is a printable character
true if ¢ is a punctuation character
true if c is a whitespace character
true if ¢ is a symbol character

true if c is a title-case letter

true if c is an uppercase letter

A case-folded copy of the given ¢

The case version of ¢ where case is unicode.LowerCase,
unicode.TitleCase, or unicode.UpperCase

The lowercase version of ¢
The title-case version of ¢

The uppercase version of ¢

fmt.Printin(IsHexDigit('8'), IsHexDigit('x'), IsHexDigit('X'),
IsHexDigit('b'), IsHexDigit('B'))

true: false:false:true:true

The unicode package provides the unicode.IsDigit() function to check whether
a character is a decimal digit, but there is no similar function to check for hex-
adecimal digits, so here we have used our own custom IsHexDigit() function.
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func IsHexDigit(char rune) bool {
return unicode.Is(unicode.ASCII Hex Digit, char)

}

This tiny function uses the generic unicode.Is() function in conjunction with
the unicode.ASCII Hex Digit range to determine whether the given character is
a hexadecimal digit. We could easily create similar functions to test for other
Unicode characteristics.

3.6.5. The Regexp Package

This subsection presents tables listing the regexp package’s functions and the
regular expression syntax the package supports, and includes a few illustrative
examples. Here and elsewhere in this book, we assume prior knowledge of

regular expressions, or “regexeps”*

The regexp package is a Go implementation of Russ Cox’s RE2 regular expres-
sion engine.® This engine is fast and thread-safe. The RE2 engine doesn’t use
backtracking, so guarantees linear time execution O(n) where n is the length of
the matched string, whereas backtracking engines can easily take exponential
time O(2") (see the sidebar “Big-O Notation”, 89 <). The superior performance
is gained at the expense of having no support for backreferences in searches.
However, it is usually straightforward to work around this constraint by making
good use of the regexp API.

Table 3.12 lists the regexp package’s functions, including four functions for
creating *regexp.Regexp values. These values provide the methods shown in
Tables 3.18 and 3.19 (> 124-125). The RE2 engine’s syntax supports the escape
sequences listed in Table 3.13 (O 121), the character classes listed in Table 3.14
(> 122), the zero-width assertions listed in Table 3.15 » 122), the quantifiers
listed in Table 3.16 > 123), and the flags listed in Table 3.17 (> 123).

The regexp.Regexp.ReplaceAll() and regexp.Regexp.ReplaceAllString() methods
support both numbered and named replacements. Numbered replacements
start at $1 for the first capturing parenthesized match. Named replacements
refer to named capture groups. Although replacements can be referred to by
number or by name (e.g., $2, $filename), it is safest to use braces as delimiters
(e.g., ${2}, ${filename}). Use $$ to include a literal $ in a replacement string.

* A good textbook that teaches regexeps is Mastering Regular Expressions; see Appendix C. The
author’s book, Programming in Python 3, has a chapter that teaches Python regexeps (these support
a subset of regexp syntax). This chapter is available as a free download from www.informit.com/title/
9780321680563 (click the “Sample Content” link and download Chapter 13).

® Information on REZ2, including links to documents covering its rationale, performance, and
implementation, is available from code.google.com/p/re2/ .


www.informit.com/title/9780321680563
www.informit.com/title/9780321680563
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Table 3.12 The Regexp Package’s Functions

Variables p and s are of type string, with p being a regexp pattern.

Syntax Description/result

regexp.Match(p, b) true and nil if p matches b of type []byte
regexp.Match- true and nil if p matches the text read by r of type
Reader(p, r) io.RuneReader

regexp.Match-
String(p, s)

true and nil if p matches s

regexp.QuoteMeta(s) A string with all regexp metacharacters safely quoted

regexp.Compile(p)

A xregexp.Regexp and nil if p compiles successfully; see
Tables 3.18 and 3.19 (> 124-125)

regexp.Compile- A xregexp.Regexp and nil if p compiles successfully; see
POSIX(p) Tables 3.18 and 3.19 (> 124-125)

regexp.Must- A xregexp.Regexp if p compiles successfully, otherwise
Compile(p) panics; see Tables 3.18 and 3.19 (> 124-125)
regexp.Must- A xregexp.Regexp if p compiles successfully, otherwise
CompilePOSIX(p) panics; see Tables 3.18 and 3.19 (> 124-125)

Syntax

\C
\000
\XxHH

\x{HHHH}

\a
\f
\n
\r
\t
\v
\Q..

\E

Table 3.13 The Regexp Package’s Escape Sequences
Description
Literal character c; e.g., \x is a literal * rather than a quantifier
Character with the given octal code point
Character with the given 2-digit hexadecimal code point
Character with the given 1-6-digit hexadecimal code point
ASCII bell (BEL) = \007
ASCII formfeed (FF) =\014
ASCII linefeed (LF) =\012
ASCII carriage return (CR) =\015
ASCII tab (TAB) =\011
ASCII vertical tab (VT) =\013

Matches the ... text literally even if it contains characters like *
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Table 3.14 The Regexp Package’s Character Classes
Syntax Description
[chars] Any character in chars
[*chars] Any character not in chars

Any ASCII character in the name character class:

[[:alnum:]] = [0-9A-Za-Z] [[:lower:]] = [a-z]
[[:alpha:]] = [A-Za-z] (print:]] = [ —]

[:name:] [[:ascii:]] = [\xB0-\x7F] [[:punct:]1] = ['-/:-@[-"{-~]
[[:blank:]] = [ \t] [[:space:]] = [ \t\n\V\f\r]
[[:cntrl:]] = [\x00-\x1F\x7F] [[:upper:]] = [A-Z]
[T:digit:]] = [6-9] ([vord: 1] = [0-9A-Za-2 ]
[[:graph:]] = [*~-] [[:xdigit:]] = [0-9A-Fa-z]

[:“name:] Any ASCII character not in the name character class
. Any character (including newline if flag s is set)
\d Any ASCII digit: [0-9]

\D Any ASCII nondigit: [*0-9]

\s Any ASCII whitespace: [ \t\n\f\r]

\S Any ASCII nonwhitespace: [ \t\n\f\r]

\w Any ASCII “word” character: [0-9A-Za-z ]

\W Any ASCII non-“word” character: [*0-9A-Za-z_]

\pN Any Unicode character in the N one-letter character class;e.g., \pL

to match a Unicode letter

Any Unicode character not in the N one-letter character class;e.g.,
\PL to match a Unicode nonletter

Any Unicode character in the Name character class;e.g., \p{L1}
\p{Name} matches lowercase letters, \p{Lu} matches uppercase letters, and
\p{Greek} matches Greek characters

\PN

\P{Name}  Any Unicode character not in the Name character class

Table 3.15 The Regexp Package’s Zero-Width Assertions

Syntax Description/result

~ Start of text (or start of line if flag m is set)

$ End of text (or end of line if flag m is set)

\A Start of text

\z End of text

\b Word boundary (\w followed by \W or \A or \z; or vice versa)

\B Not a word boundary
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Syntax
e? or e{0,1}
e+ or e{1,}
e* or e{0,}
e{m,}
e{,n}

e{m,n}

Table 3.16 The Regexp Package’s Quantifiers
Description
Greedily match zero or one occurrence of expression e
Greedily match one or more occurrences of expression e
Greedily match zero or more occurrences of expression e
Greedily match at least m occurrences of expression e
Greedily match at most n occurrences of expression e

Greedily match at least m and at most n occurrences of expres-
sion e

e{m} or e{m}? Match exactly m occurrences of expression e

e?? or e{0,1}? Nongreedily match zero or one occurrence of expression e

e+? or e{1,}? Nongreedily match one or more occurrences of expression e

e*? or e{0,}? Nongreedily match zero or more occurrences of expression e

e{m,}?

e{,n}?

e{m,n}?

Syntax

(?flags)

(?flags:e)
(e)
(?P<name>e)

(?:e)

Nongreedily match at least m occurrences of expression e
Nongreedily match at most n occurrences of expression e

Nongreedily match at least m and at most n occurrences of
expression e

Table 3.17 The Regexp Package’s Flags and Groups
Description
Match case-insensitively (the default is case-sensitive matching)

Multiline mode makes ~ and $ match at the start and end of
every line (the default is single-line mode)

Make . match any character including newlines (the default is
for . to match any character except newlines)

Make greedy matches nongreedy and vice versa;i.e., swap the
meaning of ? after a quantifier (the default is for matches to be
greedy unless their quantifier is followed by ? to make them
nongreedy)

Apply the given flags from this point on (precede the flag or flags
with - to negate)

Apply the given flags to expression e (precede the flag or flags
with - to negate)

Group and capture the match for expression e

Group and capture the match for expression e using the capture
name name

Group but don’t capture the match for expression e
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Table 3.18 The *regexp.Regexp Type’s Methods #1

Variable rx is of type *regexp.Regexp; s is the string to match; b is the [1byte to match; r is
the io.RuneReader to match; and n is the maximum number of matches (-1 means as many
as possible). A nil return means no match(es).

Syntax

rx.Expand(...)

rx.ExpandString(...)

rx.Find(b)
rx.FindAll(b, n)

rx.FindAllIndex(b, n)

rx.FindAllString(s, n)

rx.FindAllString-
Index(s, n)

rx.FindAl1StringSub-
match(s, n)
rx.FindAl1StringSub-
matchIndex(s, n)
rx.FindA11Sub-
match(b, n)

rx.FindAllSubmatch-
Index(b, n)

rx.FindIndex(b)

rx.FindReaderIndex(r)
rx.FindReaderSub-
matchIndex(r)
rx.FindString(s)
rx.FindString-
Index(s)
rx.FindStringSub-
match(s)
rx.FindStringSub-
matchIndex(s)

Description/result

Performs the $ replacements done by the Replace-
Al1() method—rarely used directly (advanced)
Performs the $ replacements done by the ReplaceAll-
String() method—rarely used directly (advanced)

A []byte with the leftmost match or nil

A [][]byte of all nonoverlapping matches or nil

An [][]int (a slice of 2-item slices) each identifying
amatchornil;e.g.,b[pos[0]:pos[1]] where pos is one
of the 2-item slices

A []string of all nonoverlapping matches or nil
An [][]int (a slice of 2-item slices) each identifying

amatchornil;e.g.,s[pos[0]:pos[1]] where pos is one
of the 2-item slices

A [][]string (a slice of string slices where each
string corresponds to a capture) or nil

An [][]1int (a slice of 2-item int slices that corre-
spond to captures) or nil

A [1[1[]1byte (a slice of slices of []bytes where each
[1byte corresponds to a capture) or nil

An [][]int (a slice of 2-item int slices that corre-
spond to captures) or nil

A 2-item []int identifying the leftmost match;e.g.,
blpos[0]:pos[1]] where pos is the 2-item slice, or nil
A 2-item []int identifying the leftmost match or nil
An []int identifying the leftmost match and captures
or nil

The leftmost match or an empty string

A 2-item []int identifying the leftmost match or nil

A []string with the leftmost match and captures
ornil

An []int identifying the leftmost match and captures
or nil
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Table 3.19 The *regexp.Regexp Type’s Methods #2

Variable rx is of type *regexp.Regexp; s is the string to match; b is the [ 1byte to match.

Syntax
rx.FindSubmatch(b)

rx.FindSubmatch-
Index(b)

rx.Literal-
Prefix()
rx.Match(b)
rx.MatchReader(r)
rx.MatchString(s)
rx.NumSubexp ()
rx.Replace-
All(b, br)

rx.ReplaceAll-
Func(b, f)

rx.ReplaceAll-
Literal(b, br)

rx.ReplaceAll-
LiteralString(s, sr)

rx.ReplaceAll-
String(s, sr)

rx.ReplaceAll-
StringFunc(s, f)
rx.String()

rx.Subexp-
Names ()

Description/result
A [][]byte with the leftmost match and captures
or nil

A [][]byte with the leftmost match and captures
or nil

The possibly empty prefix string that the regexp must
begin with and a bool indicating whether the whole
regexp is a literal string match

true if the regexp matches b

true if the regexp matches r of type io.RuneReader
true if the regexp matches s

How many parenthesized groups the regexp has

A []byte that is a copy of b with every match replaced
with br of type []1byte with $ replacements (see text)

A [1byte that is a copy of b with every match replaced
with the return value of a call to function f of type
func([1byte) [1byte and whose argument is a match

A []byte that is a copy of b with every match replaced
with br of type []byte

A string that is a copy of s with every match replaced
with sr of type string replacements

A string that is a copy of s with every match replaced
with sr of type string with $ replacements (see text)

A string that is a copy of s with every match replaced
with the return value of a call to function f of type
func(string) string and whose argument is a match

A string containing the regexp pattern

A []string (which must not be modified), containing
the names of all the named subexpressions
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An example that typically involves the use of replacements is where we have a
list of names of the form forenamel ... forenameN surname and want to change
the list to have the form surname, forenamel ... forenameN. Here is how we can
achieve this using the regexp package, and with correct handling of accented
and other non-English characters.

nameRx := regexp.MustCompile( (\pL+\.7(?:\s+\pL+\.?)*)\s+(\pL+) )
for i := 0; 1 < len(names); i++ {

names[i] = nameRx.ReplaceAllString(names[i], "${2}, ${1}")
}

The names variable is of type []string and initially holds the original names.
Once the loop is complete the names variable holds the modified names.

The regexp matches one or more whitespace-separated forenames each consist-
ing of one or more Unicode letters (\pL) optionally followed by a period, followed
by whitespace and a surname of one or more Unicode letters.

Using numbered replacements can lead to maintenance problems—for example,
if we inserted a new capture group in the middle, at least one of the numbers
would be wrong. The solution is to use named replacements since these aren’t
order-dependent.

nameRx := regexp.MustCompile(
" (?P<forenames>\pL+\.?(?:\s+\pL+\.?)*)\s+(?P<surname>\pL+) ")
for i := 0; i < len(names); i++ {
names[i] = nameRx.ReplaceAllString(names[i],
"${surname}, ${forenames}")

}

Here we have given the two capture groups meaningful names. This helps make
both the regular expression and the replacement string more understandable.

A simple regexp for matching duplicate “words” that relies on backreferences
would be written in, say, Python or Perl, as \b(\w+)\s+\1\b. Since the regexp
package doesn’t support backreferences, to achieve the same effect we must
combine a regexp with a few lines of code.

wordRx := regexp.MustCompile( \w+ )
if matches := wordRx.FindAllString(text, -1); matches != nil {
previous := ""
for , match := range matches {
if match == previous {
fmt.Println("Duplicate word:", match)
}

previous = match
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}

The regexp greedily matches one or more “word” characters. The regexp.Reg-
exp.FindAl1String() function returns a []string of all nonoverlapping matches.
If there was at least one match (i.e., matches isnot nil), we iterate over the string
slice and print any duplicates by comparing the current matched word with the
previous word.

Another common regexp use is to match key: value lines in configuration files.
Here is an example that populates a map based on such lines.

valueForKey := make(map[string]string)
keyValueRx := regexp.MustCompile( \s*([[:alpha:]]\w#)\s*:\sx(.+)" )
if matches := keyValueRx.FindAllStringSubmatch(lines, -1); matches != nil {
for , match := range matches {
valueForKey[match[1]] = strings.TrimRight(match[2], "\t ")
}
}

The regexp says to skip any leading whitespace and match a key which must
begin with an English letter followed by zero or more letters, digits, or under-
scores, followed by optional whitespace, a colon, optional whitespace, and then
the value—any characters up to but excluding the newline or end of the string.
Incidentally, we could have used the slightly shorter [A-Za-z] instead of [[:al-
pha: 1], or if we wanted to support Unicode keys, (\pL[\pL\p{Nd}_1*), Unicode
letter followed by zero or more Unicode letters, decimal digits, or underscores.
Since the .+ expression won’t match newlines, this regexp will work on a string
that contains multiple key: value lines.

Thanks to the use of greedy matching (which is the default), the regexp will
consume any whitespace that precedes the value. But to get rid of whitespace
at the end of a value we must use a trim function since the .+ expression’s
greediness means that following it with \s* would have no effect. Nor could we
have used nongreedy matching (e.g., .+?), since that would only match the first
word of values that contain two or more space-separated words.

By using the regexp.Regexp.FindAl1StringSubmatch() function we will get a
slice of slices of strings (or nil); the -1 says to match as many times as possible
(without overlaps). In this example, each match will produce a slice of exactly
three strings, the first containing the whole match, the second containing the
key, and the third containing the value. Both the key and the value will have at
least one character because their minimum quantification is one.

Although it is best to parse XML using Go’s xml.Decoder, sometimes we may sim-
ply have XML-style attributes which have the form name="value" or name="'val-
ue'. For these, a simple regexp is sufficient.
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attrValueRx := regexp.MustCompile(regexp.QuoteMeta(attrName) +
=2 10)))
if indexes := attrValueRx.FindAll1StringSubmatchIndex(attribs, -1);
indexes != nil {
for , positions := range indexes {
start, end := positions[2], positions[3]
if start == -1 {
start, end = positions[4], positions[5]
}
fmt.Printf("'%s'\n", attribs[start:end])

}

The attrValueRx regexp matches a safely-escaped attribute name followed by an
equals sign and then a double- or single-quoted string. The parentheses used
for the alternation (|) would normally also capture, but in this case we don’t
want them to—since we don’t want to capture the quotes—so we have made
the parentheses noncapturing ((?:)). Just to show how it is done, instead of
retrieving the actual matching strings we have retrieved index positions. In this
example there will always be three pairs of ([start:end]) indexes, the first pair
for the whole match, the second pair for a double-quoted value, and the third
pair for a single-quoted value. Of course, only one of the values will match, in
which case the other’s indexes will both be -1.

Just like the previous examples we have asked to match every nonoverlapping
match in the string, and in this case we get an [][]int of index positions (or
nil). For each positions slice of ints, the whole match is the slice attribs[posi-
tions[0]:positions[1]]. The quoted string is either attribs[positions[2]:posi-
tions[3]] or attribs[positions[4]:positions[5]], depending on the type of quote
used. The code begins with the assumption that double quotes are used, but if
this isn’t the case (i.e., start == -1), then it uses the single-quote positions.

Earlier we saw how to write a SimplifyWhitespace() function (111 <). Here is
how to achieve the same thing using a regular expression and the strings.Trim-
Space() function.

simplifyWhitespaceRx := regexp.MustCompile( [\s\p{Zl}\p{Zp}]+")
text = strings.TrimSpace(simplifyWhitespaceRx.ReplaceAllLiteralString(
text, " "))

The regexp does a single pass on the string and the strings.TrimSpace() function
only works on the ends of the string, so the combination of both doesn’t do
too much work. The regexp.Regexp.ReplaceAllLiteralString() function takes a
string to work on and a replacement text with which every match is replaced.
(The difference between regexp.Regexp.ReplaceAllString() and regexp.Regexp.
ReplaceAllLiteralString() is that the former does $ replacements and the latter
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does not.) So,in this case, every sequence of one or more whitespace characters
(ASCII whitespaces and Unicode line and paragraph separators) is replaced
with a single space.

For our final regexp example we will see how to do a replacement using a
function.

unaccentedLatinlRx := regexp.MustCompile(
" [AAAAARECEEEEIIIIPN00000UUIUYa4aa5a=ceé66111175066800UGNTYY]+)
unaccented := unaccentedLatinlRx.ReplaceAllStringFunc(latinl,
UnaccentedLatinl)

The regexp simply matches one or more accented Latin-1 letters. The reg-
exp.Regexp.ReplaceAllStringFunc() function calls the function passed as its sec-
ond argument (with signature func(string) string) every time there is a match.
The function is given the match’s text as its argument and this text is replaced
with the text the function returns (which could be an empty string).

func UnaccentedlLatinl(s string) string {
chars := make([]rune, 0, len(s))
for , char := range s {
switch char {
case 'A', 'A', 'A', 'A', 'A', 'A':

char = 'A'
case 'L£':
chars = append(chars, 'A')
char = 'E'
/] ...
case 'y', 'V':
char = 'y'
}

chars = append(chars, char)
}
return string(chars)

}

This simple function replaces every accented Latin-1 character with its unac-
cented cousin. It also replaces the @ ligature (which is a full character in some
languages) with the characters a and e. Of course, this example is rather arti-
ficial since in this case we could just as easily write unaccented := Unaccented-
Latinl(latinl) to perform the conversion.

This completes the illustrative regexp examples. Notice that in Tables 3.18
and 3.19, for every “String” regexp function, there is a corresponding function
without the “String” that operates on []bytes rather than strings. Also, a few of
the book’s other examples use the regexp package (e.g., 35 < and » 344).



130 Chapter 3. Strings

Now that we have covered Go’s strings and introduced its string-related
packages, we will round off the chapter with an example that makes use of some
of Go’s string functionality, followed as usual with some exercises.

3.7. Example: M3u2pls

In this section we will briefly review a short but complete program that reads
an arbitrary .m3u music playlist file given on the command line and outputs
an equivalent .pls playlist file. The program makes a lot of use of the strings
package and other material covered in this and previous chapters, as well as
introducing a few minor new things.

Here is an extract from an .m3u file with an ellipsis (...) used to elide most of the
songs.

#EXTM3U

#EXTINF:315,David Bowie - Space 0ddity
Music/David Bowie/Singles 1/01-Space 0ddity.ogg
#EXTINF:-1,David Bowie - Changes

Music/David Bowie/Singles 1/02-Changes.ogg

#EXTINF:251,David Bowie - Day In Day Out
Music/David Bowie/Singles 2/18-Day In Day Out.ogg

The file begins with the literal string #EXTM3U. Each song is represented by two
lines. The first line starts with the literal string #EXTINF: and is followed by the
song’s duration in seconds, then a comma, and then the song’s name. A duration
of -1 means that the length is unknown (in both formats). The second line is
the path to the file that stores the song—here we are using the open, patent-free
Vorbis Audio format in an Ogg container (www.vorbis.com), and Unix-style
path separators.

Here is an extract from an equivalent .pls file, again with an ellipsis used to
elide most of the songs.

[playlist]

Filel=Music/David Bowie/Singles 1/01-Space 0ddity.ogg
Titlel=David Bowie - Space 0ddity

Lengthl=315

File2=Music/David Bowie/Singles 1/02-Changes.ogg
Title2=David Bowie - Changes

Length2=-1

File33=Music/David Bowie/Singles 2/18-Day In Day Out.ogg
Title33=David Bowie - Day In Day Out


www.vorbis.com
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Length33=251
NumberOfEntries=33
Version=2

The .pls file format is slightly more elaborate than the .m3u format. The file
begins with the literal string [playlist]. Each song is represented by three
key-value entries for the filename, title, and duration in seconds. The .pls
format is actually a specialized form of .ini file (Windows initialization format)
where each key (within a square-bracket-titled section) must be unique—hence
the numbering. And the file ends with two lines of metadata.

The m3u2pls program (in file m3u2pls/m3u2pls.go) expects to be run with an .m3u
file specified on the command line and writes an equivalent .pls file to os.Stdout
(i.e., to the console). We can easily use redirection to send the .pls data into an
actual file. Here is an example of the program’s usage.

$ ./m3u2pls Bowie-Singles.m3u > Bowie-Singles.pls

Here we tell the program to read the Bowie-Singles.m3u file and use console
redirection to write the .pls format version to the Bowie-Singles.pls file. (Of
course, it would be nice to be able to convert the other way too—and this is
precisely what the exercise that follows this section involves.)

We will review almost the entire program, skipping only the imports.

func main() {
if len(o0s.Args) == 1 || !strings.HasSuffix(os.Args[1], ".m3u") {
fmt.Printf("usage: %s <file.m3u>\n", filepath.Base(os.Args[0]))
os.Exit(1)
}

if rawBytes, err := ioutil.ReadFile(os.Args[1]); err != nil {
log.Fatal(err)

} else {
songs := readM3uPlaylist(string(rawBytes))
writePlsPlaylist(songs)

}

The main() function begins by checking to see if the program has been invoked
with an .m3u file specified on the command line. The strings.HasSuffix() func-
tion takes two strings and returns true if the first string ends with the second
string. If no .m3u file has been specified a usage message is output and the pro-
gram is terminated. The filepath.Base() function returns the basename (i.e.,
the filename) of the given path and the os.Exit() function cleanly terminatesthe
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program—for example, stopping all goroutines and closing any open files—and
returns its argument to the operating system.

If an .m3u file has been specified we attempt to read the entire file using the
ioutil.ReadFile() function. This function returns all the file’s bytes (as a [ ]1byte)
and an error which will be nil if the file was read without incident. If a problem
occurred (e.g., the file doesn’t exist or is unreadable), we use the log.Fatal () func-
tion to output the error to the console (actually to os.Stderr), and to terminate
the program with an exit code of 1.

If the file is successfully read we convert its raw bytes to a string—this assumes
that the bytes represent 7-bit ASCII or UTF-8 Unicode—and immediately pass
the string to a custom readM3uPlaylist() function for parsing. The function
returns a slice of Songs (i.e., a []Song). We then write the song data using a
custom writePlsPlaylist() function.

type Song struct {
Title string
Filename string
Seconds int

}

Here we have defined a custom Song type using a struct (§6.4, » 275) to provide
convenient file-format-independent storage for the information about each
song.

func readM3uPlaylist(data string) (songs []Song) {
var song Song
for , line := range strings.Split(data, "\n") {
line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#EXTM3U") {
continue
}
if strings.HasPrefix(line, "#EXTINF:") {
song.Title, song.Seconds = parseExtinfLine(line)
} else {
song.Filename = strings.Map(mapPlatformDirSeparator, line)

}

if song.Filename != "" && song.Title != "" && song.Seconds != 0 {
songs = append(songs, song)
song = Song{}

}

}

return songs
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This function accepts the entire contents of an .m3u file as a single string and
returns a slice of all the songs it is able to parse from the string. It begins by
declaring an empty Song variable called song. Thanks to Go’s practice of always
initializing things to their zero value, song’s initial contents are two empty
strings and a Song.Seconds value of 0.

At the heart of the function is a for ... range loop (§5.3, » 203). The
strings.Split() function is used to split the single string that holds the entire
.m3u file’s data into separate lines, and the for loop iterates over each of these
lines. If a line is empty or is the first line (i.e., starts with the string literal
"#EXTM3U"), the continue statement is reached; this simply passes control back
to the for loop to force the next iteration—or the end of the loop if there are no
more lines.

If the line begins with the "#EXTINF:" string literal, the line is passed to a
custom parseExtinfLine() function for parsing: This function returns a string
and an int which are immediately assigned to the current song’s Song.Title and
Song.Seconds fields. Otherwise, it is assumed that the line holds the filename
(including the path) of the current song.

Rather than storing the filename as is, the strings.Map() function is called with
a custom mapPlatformDirSeparator() function to convert directory separators
into those native for the platform the program is running on, and the resultant
string is stored as the current song’s Song.Filename. The strings.Map() function
is passed a mapping function with signature func(rune) rune and a string. For
every character in the string the mapping function is called with the character
replaced by the character returned by the passed-in function—which may be
the same as the original one, of course. As usual with Go, a character is a rune
whose value is the character’s Unicode code point.

If the current song’s filename and title are both nonempty, and if the song’s
duration isn’t zero, the current song is appended to the songs return value (of
type [15ong) and the current song is set to its zero value (two empty strings and
0) by assigning an empty Song to it.

func parseExtinflLine(line string) (title string, seconds int) {
if i := strings.IndexAny(line, "-0123456789"); i > -1 {
const separator = ","
line = line[i:]
if j := strings.Index(line, separator); j > -1 {
title = line[j+len(separator):]
var err error
if seconds, err = strconv.Atoi(line[:j]); err != nil {
log.Printf("failed to read the duration for '%s': %v\n",
title, err)
seconds = -1
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}
}

return title, seconds

}

This function is used to parse lines of the form: #EXTINF:duration,title and
where the duration is expected to be an integer, either -1 or greater than zero.

The strings.IndexAny() function is used to find the position of the first digit or
the minus sign. An index position of -1 means not found; any other value is the
index position of the first occurrence of any of the charactersin the string given
as the strings.IndexAny() function’s second argument, in which case variable i
holds the position of the first digit of the duration (or of -).

Once we know where the digits begin we slice the line to start at the digits. This
effectively discards the "#EXTINF: " that was at the start of the string, so now the
line has the form: duration, title.

The second if statement uses the strings.Index() function to get the index
position of the first occurrence of the "," string in the line—or -1 if there is no
such occurrence.

The title is the text from after the comma to the end of the line. To slice from
after the comma we need the comma’s starting position (j) and must add to
this the number of bytes the comma occupies (len(separator)). Of course, we
know that a comma is a 7-bit ASCII character and so has a length of one, but
the approach shown here will work with any Unicode character, no matter how
many bytes are used to represent it.

The duration is the number whose digits go from the start of the line up to but
excluding the j-th byte (where the comma is). We convert the number into an
int using the strconv.Atoi() function—and if the conversion fails we simply set
the duration to -1 which is an acceptable “unknown duration” value, and log the
problem so that the user is aware of it.

func mapPlatformDirSeparator(char rune) rune {
if char == '/' || char == "\\'' {
return filepath.Separator
}
return char

}

This function is called by the strings.Map() function (inside the readM3uPlay-
list() function) for every character in a filename. It replaces any directory sep-
arator with the platform-specific directory separator. And any other character
is returned unchanged.
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Like most cross-platform programming languages and libraries, Go uses
Unix-style directory separators internally on all platforms, even on Windows.
However, for user-visible output and for human-readable data files, we prefer
to use the platform-specific directory separator. To achieve this we can use the
filepath.Separator constant which holds the / character on Unix-like systems
and the \ character on Windows.

In this example we don’t know whether the paths we are reading use forward
slashes or backslashes, so we have had to cater for both. However, if we know
for sure that a path uses forward slashes we can use the filepath.FromSlash()
function on it: This will return the path unchanged on Unix-like systems, but
will replace forward slashes with backslashes on Windows.

func writePlsPlaylist(songs []Song) {

fmt.Printin("[playlist]")

for i, song := range songs {
i++
fmt.Printf("File%d=%s\n", i, song.Filename)
fmt.Printf("Title%d=%s\n", i, song.Title)
fmt.Printf("Length%d=%d\n", i, song.Seconds)

}

fmt.Printf("NumberOfEntries=%d\nVersion=2\n", len(songs))

}

This function writes out the songs data in .pls format. It writes the data to
0s.Stdout (i.e., to the console), so file redirection must be used to get the output
into a file.

The function begins by writing the section header ("[playlist]"), and then for
every song it writes the song’s filename, title, and duration in seconds, each on
their own lines. Since each key must be unique a number is appended to each
one, starting from 1. And at the end the two items of metadata are written.

3.8. Exercises

There are two exercises for this chapter, the first involving the modification of
an existing command-line program, and the second requiring the creation of a
web application (optionally) from scratch.

1. The previous section’s m3u2pls program does a decent job of converting
.m3u playlist files into .pls format. But what would make the program
much more useful is if it could also perform the reverse conversion, from
.pls format to .m3u format. For this exercise copy the m3u2pls directo-
ry to, say, my playlist and create a new program called playlist that has
the required functionality. Its usage message should be usage: playlist
<file.[pls|m3ul>.
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If the program is called with an .m3u file it should do exactly what the
m3u2pls program does: Write the file’s data in . pls format to the console. But
if the program is called with a .pls file it should write the file’s data in .m3u
format, again to the console. The new functionality will require about 50
new lines of code. A straightforward solution is provided in the file play-
list/playlist.go.

2. Data cleaning, matching, and mining applications that involve people’s
names can often produce better results by matching names by the way they
sound rather than by how they are spelled. Many algorithms for name
matching English language names are available, but the oldest and sim-
plest is the Soundex algorithm.

The classic Soundex algorithm produces a soundex value of a capital letter
followed by three digits. For example, the names “Robert” and “Rupert”
both have the same soundex value of “R163” according to most Soundex
algorithms. However, the names “Ashcroft” and “Ashcraft” have a soundex
value of “A226” according to some Soundex algorithms (including the one
in the exercise solution), but “A261” according to others.

The exercise is to write a web application that supports two web pages.
The first page (with path /) should present a simple form through which
the user can enter one or more names to see their soundex values—this is
illustrated in Figure 3.3’s left-hand screenshot. The second page (with path
/test) should execute the application’s soundex() function on a list of strings
and compare each result to what we would expect—this is illustrated in
Figure 3.3’s right-hand screenshot.

| Soundex - cewease T Soundex Test - cewease X

File Edit Wiew History Buokmarks Tools Help File Edit Wiew History Buokmarks Tools Help
v (C wa | @ hitp:fflocalhe v v (C Wi | @ sLe00les]  w

Soundex [ Name [Soundex|Expected|Test

[Asheraft  [a226  [a226

PASS

Compute soundex codes for a list of names. [Ashcroft  [A226 A226
Names (comma or space-separated): [Rurraughs [R622 R&22
[Burrows  [BS20 B620
Compute [Ciondecks [cs32 CH37
[Name [Soundex [Ellery E160 E160
[natashalrn370 [Culer Efl'?lo th?.o
natale N340 [Example  [E251 E251
mate N300 [Gauss G200 G200
[Ghosh Gzoo  [czoo  [Pass| ¢
Done Lone

Figure 3.3 The Soundex application on Linux

Readers who would like a jump-start could copy one of the other web
applications (statistics, statistics ans, quadratic_ansl, quadratic_ans2) to
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get the skeleton of the application up and running, and then just focus on
the soundex and test page functionality.

A solution is in the file soundex/soundex.go and is about 150 lines; the
soundex () function itself is 20 lines although it does rely on an []int that
maps capital letters to digits in a slightly subtle way. The solution’s algo-
rithm is based on the Python implementation shown on the Rosetta Code
web site (rosettacode.org/wiki/Soundex) which produces slightly different
results to the Go implementation shown on that site and from the one shown
on Wikipedia (en.wikipedia.org/wiki/Soundex). The test data is in the file
soundex/soundex-test-data. txt.

Naturally, readers are free to implement whichever version of the algorithm
they prefer—or even implement a more advanced algorithm such as one of
the Metaphone algorithms—and simply adjust the tests to match.
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This chapter’s first section explains Go’s values, pointers, and reference types
since an understanding of these is necessary for the rest of the chapter and
for subsequent chapters. Go’s pointers work just like those in C and C++, both
syntactically and semantically—except that Go does not support pointer arith-
metic, thus eliminating a whole category of potential bugs that can affect C and
C++ programs. Nor does Go need free() or delete since Go has a garbage collector
and manages memory automatically* Values of Go’s reference types are cre-
ated in a unique and simple way and once created are used rather like Java or
Python object references. Go’s values work like those in most other mainstream
languages.

This chapter’s other sections are devoted to Go’s built-in collection types. All the
built-in collection types are covered—arrays, slices, and maps. These types are

*Go’s delete() function is used to delete keys from maps as we will see later in this chapter.
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so versatile and efficient that between them they comfortably meet almost every
need. The standard library provides some additional, more specialized collection
types—container/heap, container/list, and container/ring—that might be more
efficient for particular use cases. A couple of tiny examples showing a heap and
a list are presented in a later chapter (§9.4.3, » 421). And Chapter 6 has an ex-
ample that shows how to create a balanced binary tree (§6.5.3, » 302).

4.1. Values, Pointers, and Reference Types

In this section we discuss what variables hold (values, pointers, and references
—including array values, and slice and map references), whereas in the follow-
ing sections we explain how to actually use arrays, slices, and maps.

In general, Go variables hold values. That is, we can think of a variable as
“being” the value it stores. The exceptions are variables that refer to channels,
functions, methods, maps, and slices—these hold references—and variables
that hold pointers.

Values that are passed to functions or methods are copied. This is cheap for
Booleans and numbers because they only occupy from one to eight bytes each.
Passing strings by value is also cheap because Go compilers can safely optimize
passing them so that only a small amount of data is actually passed per string,
no matter how large the string is, since Go strings are immutable. (The amount
per string is 16 bytes on 64-bit machines and 8 bytes on 32-bit machines*) Of
course, if a passed-in string is modified (e.g., using the += operator), behind
the scenes Go must do a copy on write which is potentially expensive for large
strings—but this is a price that would have to be paid no matter what language
was being used.

Unlike C or C++, Go arrays are passed by value—so passing large arrays is
expensive. Fortunately, arrays are rarely needed in Go programming since
slices are used instead, as we will see in the next section. Passing a slice costs
much the same as passing a string (i.e., 16 bytes on 64-bit machines and 12
bytes on 32-bit machines), no matter what the slice’s length or capacity.* Nor is
there any copy on write overhead if the slice is modified, because unlike strings,
slices are mutable (i.e., if a slice is modified the modification is visible to all the
variables—references—that refer to it).

Figure 4.1 illustrates the relationship between variables and the memory they
occupy. In the figure, memory addresses are shown in gray since they will vary,
and bold is used to indicate changes.

Conceptually, a variable is the name given to a piece of memory that holds a
value of a particular type. So if we have the short variable declarationy :=1.5,

*The sizes in bytes were measured on a 64-bit machine and on a 32-bit machine at the time of this
writing. The amounts are implementation details that may vary but will never be large.
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Statement Variable Value Type Memory Address
y := 1.5 y 1.5 float64
Y+t y 2.5 float64
y 2.5 float64
z := math.Ceil(y) 2.5 float64 Modifiable copy of yinCeil()
z 3.0 float64

Figure 4.1 Simple values in memory

Go will set aside enough memory to store a float64 (i.e., 8 bytes) and will put
the 1.5 value into this memory. From this point onward—while y remains in
scope—Go will treat the variable y as synonymous with the memory that stores
the float64 that y is associated with. So if we follow the declaration with the
statement y++, Go will increment the value that y is associated with. However,
if we pass y to a function or method, Go will pass a copy of y; in other words Go
will create a new variable that is associated with the called function or method’s
corresponding parameter name and will copy y’s value into the memory set aside
for the new variable.

Sometimes we want a function to modify a variable that we pass it. This can
be done without formality for reference types as we will see, but value types are
copied, so any modifications are applied to the copy and the original value is
left unchanged. Also, it can be expensive to pass some values, because they are
large (e.g., an array, or a struct with lots of fields). Furthermore, local variables
are garbage-collected if they are no longer being used (e.g., when they are not
being referred to and they go out of scope), yet in many situations we want
to create variables whose lifetime is determined by us rather than by their
enclosing scope.

Parameters that are cheap to pass, parameters that are modifiable, and vari-
ables whose lifetimes are independent of scope, can all be achieved by using
pointers. A pointer is a variable that holds another variable’s memory address.
Pointers are created to point to variables of a particular type—this ensures
that Go knows how large (i.e., how many bytes) the pointed-to value occupies. A
variable pointed to by a pointer can be modified through the pointer, as we will
see shortly. Pointers are cheap to pass (8 bytes on 64-bit machines, 4 bytes on
32-bit machines), regardless of the size of the value they point to. And pointed-
to variables persist in memory for as long as there is at least one pointer pointing
to them, so their lifetime is independent of the scope in which they were creat-
ed*

* C and C++ programmers should be aware that although a particular Go compiler may make
internal distinctions between stack and heap memory, Go programmers never have to worry about
this since Go handles all the memory management itself internally.
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In Go the & operator is overloaded. When used as a binary operator it performs
a bitwise AND. When used as a unary operator it returns the memory address of
its operand—and it is a memory address that a pointer stores. In Figure 4.2’s
third statement we assign the address of variable x of type int to variable pi
which has type *int (pointer to int). The unary & is sometimes called the address
of operator. The term pointer refers to the fact that a variable that holds the
memory address of another variable is considered to be “pointing to” the other
variable, as illustrated by the arrows in Figure 4.2.

The * operator is also overloaded. It multiplies its operands when used as a
binary operator. And when used as a unary operator it provides access to the
value pointed to by the variable it is applied to. So, in Figure 4.2, *pi and x
can be used interchangeably after the statement pi := &x (but not after pi is
assigned to point to a different variable). And since they are both associated
with the same int in memory, any changes to one affect the other. The unary *
is sometimes called the contents of operator or the indirection operator or the
dereference operator.

Figure 4.2 also illustrates that if we change the pointed-to value (say, using
x++), the value changes as we would expect, and when we dereference the pointer

Statement Variable Value Type Memory Address
X =3 X 3 int
y =22 y 22 int
x==38&y==22
. X 3 int <
pi := &x . :
p1 *1int ‘
APl == 3 8& X == 3 &8 Y == 22 e
X 4 int P
X++
pi xint ‘
APl == 4 &6 X == 4 §& Y == 22 e
R X 5 int <o,
*pi++ i .
p1 *1int :
APl == 5 && X == 5 &8 Y == 22 e
. y y int <,
pi := &y - y
p1 *1int :
APl == 22 & X == 5 &8 Y == 22 e
. y 23 int -
*pi++ : .
p1 xint

ApL == 23 88 X == 5 8& Y == 23 e

Figure 4.2 Pointers and values
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(xpi), it returns the new value. We can also change the value through the
pointer. For example, *pi++ means increment the pointed-to value; of course,
this will only compile if the value’s type supports the ++ operator, as Go’s built-in
numbers do.

A pointer doesn’t have to stay pointing to the same value all the time. For ex-
ample, toward the bottom of the figure we set the pointer to point to a different
value (pi := &y), and then change y through the pointer. We could easily have
gone on to change y directly (say, using y++), and then *pi would return y’s new
value.

It is also possible to have pointers to pointers (and pointers to pointers to
pointers, etc.). Using a pointer to refer to a value is called indirection. And if we
use pointers to pointers we are said to be using multiple levels of indirection.
This is quite common in C and C++, but not needed so often in Go because of Go’s
use of reference types. Here is a very simple example.

z := 37 // z is of type int

pi := & // pi is of type *int (pointer to int)

ppi := &pi // ppi is of type xxint (pointer to pointer to int)
fmt.Printin(z, xpi, **ppi)

*xxppi++ // Semantically the same as: (*(xppi))++ and *(*ppi)++
fmt.Println(z, *pi, **ppi)

37 37 37
38 38 38

In this snippet, pi is a pointer of type *int (pointer to int) that is pointing to z
of type int, and ppi is a pointer of type *xint (pointer to pointer to int) that is
pointing to pi. When dereferencing we use one * for each level of indirection,
so *ppi dereferences ppi to produce an *int, that is, a memory address, and by
applying the * operator a second time (x*ppi), we get the pointed-to int.

In addition to being the multiplication and dereferencing operator, the * oper-
ator is also overloaded for a third purpose—as a type modifier. When an * is
placed on the left of a type name it changes the meaning of the name from speci-
fying a value of the given type to specifying a pointer to a value of the given type.
This is shown in Figure 4.2’s “Type” column.

Let’s look at a tiny example to illustrate some of what we’ve discussed so far.

i:=9
j =5
product := 0

swapAndProductl(&i, &j, &product)
fmt.Println(i, j, product)

59 45
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Here we have created three variables of type int and given them initial values.
Then we have called a custom swapAndProductl() function that takes three int
pointers and makes sure that the first two (pointed to) integers are in ascending
order and sets the third one’s (pointed to) value to the product of the first two.
Since the function takes pointersrather than values, we must pass the addresses
of the ints, not the ints themselves. Whenever we see the & address of operator
being used in a function call, we should assume that the corresponding variable’s
value might be modified inside the function. Here is the swapAndProductl() func-
tion.

func swapAndProductl(x, y, product *int) {
if *x > *y {
XX, Xy = ky, *X
}
xproduct = *x * xy // The compiler would be happy with: *product=*x*xy
}

The function’s parameter declaration’s *int uses the * type modifier to specify
that the parameters are all pointers to integers. This means, of course, that
we can only pass the addresses of integer variables (using the & address of
operator), not integer variables themselves or literal integer values.

Within the function we are concerned with the values that the pointers point
to, so we must use the * dereference operator throughout. In the last executable
line we multiply two pointed-to values together and assign the result to another
pointer’s pointed-to value. Go can distinguish when two consecutive *s mean
multiplication and dereference rather than two dereferences, based on the
context. Inside the function the pointers are called x, y, and product, but the
values they point to are the ints i, j, and product, at the function’s call site.

Writing functions in this way is common in C and older C++ code, but is less
often necessary in Go. If we have just one or a few values it is more idiomatic in
Go to return them, and if we have lots of values it is common to pass them as a
slice or map (which can be cheaply passed without using pointers, as we will see
shortly), or in a struct passed by pointer if they are all of different types. Here
is a simpler alternative function that doesn’t use pointers:

i:=9

j =5

i, j, product := swapAndProduct2(i, j)
fmt.Println(i, j, product)

5945

And here is how we would write the corresponding swapAndProduct2() function.
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func swapAndProduct2(x, y int) (int, int, int) {
if x >y {
X, Y=Y, X
}
return x, y, x xy

}

This version of the function is perhaps clearer than the first one; but without us-
ing pointers it has the disadvantage that it cannot perform the swap in-place.

In C and C++ it is common to have functions which accept a pointer to a Boolean
that is used to indicate success or failure. This can easily be done in Go by
including a *bool in a function’s signature; but it is much more convenient to
return a Boolean success flag (or best of all, an error value), as the last (or only)
return value, which is standard practice in Go.

In the code snippets shown so far, we have used the & address of operator to take
the address of function parameters or local variables. Thanks to Go’s automatic
memory management this is always safe, since so long as a pointer refers to a
variable, that variable will be kept in memory. This is why it is safe to return
pointers to local variables created inside functions in Go (something that is a
disastrous error in C and C++ for nonstatic variables).

In situations where we want to pass around modifiable values of nonreference
types or to pass values of large types efficiently, we need to use pointers. Go
provides two syntaxes for creating variables and at the same time acquiring
pointers to them, one using the built-in new() function and the other using the
address of operator. We will look at both syntaxes, and at how to create a plain
custom struct value, for comparison.

type composer struct {
name string
birthYear int

}

Given this struct definition we can create composer values or we can create
pointers to composer values, that is, variables of type *composer. And in either
case we can take advantage of Go’s support for struct initialization when we use
braces.

anténio := composer{"Antonio Teixeira", 1707} // composer value
agnes := new(composer) // pointer to composer
agnes.name, agnes.birthYear = "Agnes Zimmermann", 1845

julia := &composer{} // pointer to composer
julia.name, julia.birthYear = "Julia Ward Howe", 1819

augusta := &composer{"Augusta Holmes", 1847} // pointer to composer
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fmt.Println(antonio)
fmt.Println(agnes, augusta, julia)

{Antdnio Teixeira 1707}
&{Agnes Zimmermann 1845} &{Augusta Holmeés 1847} &{Julia Ward Howe 1819}

When Go prints pointers to structs it prints the dereferenced struct but prefixed
with the & address of operator toindicate that it is a pointer. The part of the code
snippet where the agnes and julia pointers are created illustrates the following
equivalence when the type is one that can be initialized using braces:

new(Type) = &Type{}

Both these syntaxes allocate a new zeroed value of the given Type and return
a pointer to the value. If the Type isn’t a type that can be initialized using
braces then we can use only the built-in new() function. And, of course, we don’t
have to worry about the value’s lifetime or ever delete it, since Go’s memory
management system takes care of all that for us.

One advantage of using the &Type{} syntax for structs is that we can specify
initial field values as we did here when creating the augusta pointer. (We can
even specify only selected fields and leave the others at their zero values as we
will see later; §6.4, » 275.)

In addition to values and pointers, Go has reference types. (Go also has inter-
faces, but for almost all practical purposes we can consider an interface to be
a kind of reference; interfaces are covered later; §6.3, » 265.) A variable of a
reference type refers to a hidden value in memory that stores the actual data.
Variables holding reference types are cheap to pass (e.g., 16 bytes for a slice and
8 bytes for a map on 64-bit machines), and are used with the same syntax as a
value (i.e., we don’t need to take a reference type’s address or dereference it to
access the value it refers to).

Once we reach the stage where we need to return more than four or five values
from a function or method, it is best to pass a slice if the values are homogeneous,
or to use a pointer to a struct if they are heterogeneous. Passing a slice, or a
pointer to a struct, is cheap, and allows us to modify the data in-place. We will
look at a couple of small examples to illustrate these points.

grades := []int{87, 55, 43, 71, 60, 43, 32, 19, 63}
inflate(grades, 3)
fmt.Println(grades)

[261 165 129 213 180 129 96 57 189]

Here we perform an operation on all the numbers in a slice of ints. Maps and
slices are reference types, and any changes made to a map or to a slice’s items—
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whether directly or inside a function they have been passed to—are visible to
all the variables that refer to them.

func inflate(numbers []int, factor int) {
for i := range numbers {
numbers[i] *= factor
}
}

The grades slice is passed in as the parameter numbers—but unlike when we pass
values, any changes applied to numbers are reflected in grades since they both
refer to the same underlying slice.

Since we want to modify the slice’s values in-place we have used a loop counter
to access each item in turn. We didn’t use a for index, item ... range loop since
that gets a copy of each item from the slice it operates on—this would result in
the copy being multiplied by the factor each time and then discarded, leaving
the original slice unchanged. We could have used a for loop familiar in other
languages (e.g., for i :=0; i < len(numbers); i++), but instead we have used the
more convenient for index :=range syntax. (All the for loop syntaxes are covered
in the next chapter; §5.3, » 203.)

Let’s now imagine that we have a rectangle type that stores a rectangle’s
position as its top-left and bottom-right x, y coordinates, and its fill color. We
could represent the rectangle’s data using a struct.

type rectangle struct {

x0, y0, x1, yl int

fill color.RGBA
}

Now we can create a value of the rectangle type, print it, resize it, and then print
it again.

rect := rectangle{4, 8, 20, 10, color.RGBA{OXxFF, 0, 0, OxFF}}
fmt.Println(rect)

resizeRect(&rect, 5, 5)

fmt.Println(rect)

{4 8 20 10 {255 0 0 255}}
{4 8 25 15 {255 0 0 255}}

As we noted in the previous chapter, even though Go knows nothing of our cus-
tom rectangle type it is still able to print it in a sensible way. The output shown
below the code snippet clearly shows that the custom resizeRect() function cor-
rectly did its job. And rather than passing the whole rectangle (at least 16 bytes
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for the ints alone), we just passed its address (8 bytes on a 64-bit system, no mat-
ter how large the struct is).

func resizeRect(rect *rectangle, Awidth, Aheight int) {
(xrect).x1 += Awidth // Ugly explicit dereference
rect.yl += Aheight // . automatically dereferences structs

}

The function’s first statement uses an explicit dereference just to show what
is happening under the hood. The (*rect) refers to the actual rectangle value
that the pointer points to, and the .x1 refers to the rectangle’s x1 field. The
second statement shows the idiomatic way to work with struct values—or with
pointers to structs—in the latter case relying on Go to do the dereferencing for
us. This works because Go’s . (dot) selector operator automatically dereferences
pointers to structs.*

Certain types in Go are reference types: maps, slices, channels, functions, and
methods. Unlike with pointers, there is no special syntax for reference types
since they are used just like values. It is also possible to have pointers to the ref-
erence types, although this is really only useful—and sometimes essential—for
slices. (We will see the use case for using a pointer to a slice in the next chapter;
§5.7,>» 244.))

If we declare a variable to hold a function, the variable actually gets a reference
to the function. Function references know the signature of the function they
refer to, so it is not possible to pass a reference to a function that doesn’t have
the right signature—thus eliminating some really nasty errors and crashes
which can occur in languages that allow functions to be passed by pointer but
that don’t guarantee that such functions have the correct signature. We have
already seen a few examples of passing function references—for example, when
we passed a mapping function to the strings.Map() function (112 «; 132 <«). We
will see many more examples of pointers and reference types throughout the
rest of the book.

4.2. Arrays and Slices

A Go array is a fixed-length sequence of items of the same type. Multidimension-
al arrays can be created simply by using items that are themselves arrays.

Array items are indexed using the [] index operator by their 0-based position, so
an array’s first item is array[0] and its last item is array[len(array) - 1]. Arrays
are mutable, so we can use the syntax array[index] on the left of an assignment

* Go doesn’t have or need the -> dereferencing operator used in C and C++. Go’s . (dot) operator is
sufficient for most situations (e.g., to access the fields in a struct or a pointer to a struct), and where
it isn’t, we can explicitly dereference using as many * operators as there are levels of indirection.
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to set the array’s item at the given index position. We can also use this syntax
in an expression on the right of an assignment or in a function call, to access
the item.

Arrays are created using the syntaxes:

[length]Type
[N]Type{valuel, value2, ..., valueN}
[...]Type{valuel, value2, ..., valueN}

If the ... (ellipsis) operator is used in this context, Go will calculate the array’s
length for us. (The ellipsis operator is overloaded for other purposes, as we will
see later in this chapter and in Chapter 5.) In all cases an array’s length is fixed
and unchangeable.

Here are some examples that show how to create and index arrays.

var buffer [20]byte

var gridl [3][3]int

grid1l[1][0], grid1[1][1], gridl[1][2] =8, 6, 2

grid2 := [3][3]int{{4, 3}, {8, 6, 2}}

cities := [...]string{"Shanghai", "Mumbai", "Istanbul", "Beijing"}
cities[len(cities)-1] = "Karachi"

fmt.Println("Type Len Contents")

fmt.Printf("%-8T %2d %v\n", buffer, len(buffer), buffer)
fmt.Printf("%-8T %2d %q\n", cities, len(cities), cities)
fmt.Printf("%-8T %2d %v\n", gridl, len(gridl), gridl)
fmt.Printf("%-8T %2d %v\n", grid2, len(grid2), grid2)

Type Len Contents

[20]Juint8 20 [0 0 OO OO O OOOOOOOOO00OOO O]
[4]string 4 ["Shanghai" "Mumbai" "Istanbul" "Karachi"]
[31[3]int 3 [[0 0 0] [8 6 2] [0 0 0]]

[31[3]int 3 [[4 3 0] [86 2] [0 0 0]]

Go guarantees that all array items are initialized to their zero value if they are
not explicitly initialized—or are only partly initialized—when they are created,
as the buffer, gridl, and grid2 variables illustrate.

The length of an array is given by the len() function. Since arrays are of fixed
size their capacity is always equal to their length, so for arrays the cap() function
returns the same number as the len() function. Arrays can be sliced using the
same slicing syntax as strings or slices, only the result is a slice and not an array.
And just like strings and slices, arrays can be iterated using a for ... range loop
(§5.3,>» 203).

In general, Go’s slices are more flexible, powerful, and convenient than arrays.
Arrays are passed by value (i.e., copied)—although the cost of this can be avoid-
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ed by passing pointers—whereas slices are cheap to pass, regardless of their
length or capacity, since they are references. (A slice is passed as a 16-byte val-
ue on 64-bit machines and as a 12-byte value on 32-bit machines, no matter how
many items it contains.) Arrays are of fixed size whereas slices can be resized.
The functions in Go’s standard library all use slices rather than arrays in their
public APIs* We recommend always using slices unless there is a very specific
need to use an array in a particular case. Both arrays and slices can be sliced
using the syntaxes shown in Table 4.1 > 151).

A Gosslice is a variable-length fixed-capacity sequence of items of the same type.
Despite their fixed capacity, slices can be shrunk by slicing them and can be
grown using the efficient built-in append() function, as we will see later in this
section. Multidimensional slices can be created quite naturally by using items
that are themselves slices—and the lengths of the inner slices in multidimen-
sional slices may vary.

Although arrays and slices store items of the same type there is no limitation in
practice. This is because the type used could be an interface. So we could store
items of any types provided that they all met the specified interface (i.e., had
the method or methods that the interface requires). We can even make an array
or slice’s type the empty interface, interface{}, which means that we could store
any items of any types—although when we accessed an item we would need to
use a type assertion or a type switch or introspection to make use of the item.
(Interfaces are covered in Chapter 6; reflection is covered in §9.4.9, » 427.)

Slices are created using the syntaxes:

make([1Type, length, capacity)
make([1Type, length)

[1Type{}

[1Type{valuel, value2, ..., valueN}

The built-in make() function is used to create slices, maps, and channels. When
used to create a slice it creates a hidden zero-value initialized array, and returns
a slice reference that refers to the hidden array. The hidden array, like all arrays
in Go, is of fixed length, with the length being the slice’s capacity if the first
syntax is used, or the slice’s length if the second syntax is used, or the number
of items in braces if the composite literal (third and fourth) syntax is used.

A slice’s capacity is the length of its hidden array, and its length is any amount
up toits capacity. In the first syntax the slice’slength must be less than or equal
to the capacity, although normally this syntax is used when we want the initial
length to be less than the capacity. The second, third, and fourth syntaxes are
used when we want the length and capacity to be the same. The composite

* At the time of this writing, the Go documentation often uses the term array when describing
parameters that are actually slices.
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Table 4.1 Slice Operations

Syntax Description/result

s[n] The item at index position n in slice s

s[n:m] A slice taken from slice s from index positionsntom - 1
s[n:] A slice taken from slice s from index positions n to len(s) - 1
s[:m] A slice taken from slice s from index positions 0 tom - 1

s[:] A slice taken from slice s from index positions 0 to len(s) - 1
cap(s) The capacity of slice s; always > len(s)

len(s) The number of items in slice s; always < cap(s)

s = s[:cap(s)] Increase slice s’s length to its capacity if they are different

literal (fourth) syntax is very convenient, since it allows us to create a slice with
some initial values.

The syntax []Type{} is equivalent to make([]Type, 0);both create an empty slice.
This isn’t useless since we can use the built-in append() function to effectively
increase a slice’s capacity. However, for practical purposes, when we need an
initially empty slice it is almost always better to create one using make(), giving
it a length of zero and a nonzero capacity that is or approximates the number
of items we expect the slice to end up with.

Valid index positions for a slice range from 0 to len(slice) - 1. A slice can be
resliced to reduce its length, and if a slice’s capacity is greater than its length the
slice can be resliced to increase its length up to its capacity. We can also increase
a slice’s capacity using the built-in append() function; we will see examples later
in this section.

Figure 4.3 > 152) provides a conceptual view of the relationship between slices
and their hidden arrays. Here are the slices it shows.

S
t

[]string{llAII, IIBII’ \ICII, IIDII’ IIEII’ HFH, IIGII}
s[:5] // [ABCDE]

u :=s[3 : len(s)-1] // [D E F]

fmt.Println(s, t, u)

ufl] = "x"

fmt.Println(s, t, u)

[ABCDEFG] [ABCDE] [DEF]
[ABCDXFG] [ABCD x] [D x F]

Since the slices s, t, and u all refer to the same underlying data, a change to one
will affect any of the others that refer to the same data.
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0 1 2 3 4 5 6 Indexes
||A|| ||B|| ||c|| ||D|| ||E|| ||F|| ||G|| Hidden array

L
) |

s := []string{"A", ... t := s[:5] u := s[3:len(s) - 1]
len(s) == 7 len(t) == len(u) ==
cap(s) == 17 cap(t) == cap(u) ==

Figure 4.3 A conceptual view of some slices and their hidden array

s := new([7]string)[:]
s[o], s[11, s[2], s[3], s[4], s[5], s[6] = "A", "B", "C", "D", "E", "F","G"

Using the built-in make() function or the composite literal syntax are the best
ways to create slices, but here we show an approach that is not used in practice
but that makes the array—slice relationship obvious. The first statement creates
a pointer to an array using the built-in new() function, and then immediately
takes a slice of the entire array. This will produce a slice with a length and
capacity equal to the array’s length, but with every item set to its zero value, in
this case an empty string. The second statement completes the setup of the slice
by setting the individual items to the initial values we want, after which this
slice s is exactly the same as the one created in the previous snippet using the
composite literal syntax.

Here are the slice-based equivalents to the array examples we saw earlier,
except that we have set the buffer’s capacity to be greater than its length just to
show how it is done.

buffer := make([]byte, 20, 60)
gridl := make([][]lint, 3)
for i := range gridl {

gridl[i] = make([]lint, 3)
}
gridl[1]1[0], gridl[1][1], gridl[1][2] =38, 6, 2
grid2 := [][1int{{4, 3, 0}, {8, 6, 2}, {0, 0, 0}}
cities := []string{"Shanghai", "Mumbai", "Istanbul", "Beijing"}
cities[len(cities)-1] = "Karachi"
fmt.Println("Type Len Cap Contents")
fmt.Printf("%-8T %2d %3d %v\n", buffer, len(buffer), cap(buffer), buffer)
fmt.Printf("%-8T %2d %3d %g\n", cities, len(cities), cap(cities), cities)
fmt.Printf("%-8T %2d %3d %v\n", gridl, len(gridl), cap(gridl), gridl)
fmt.Printf("%-8T %2d %3d %v\n", grid2, len(grid2), cap(grid2), grid2)
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Type Len Cap Contents

[Juint8 20 60 [0 00000000 0O0OO0006OOO O]
[Istring 4 4 ["Shanghai" "Mumbai" "Istanbul" "Karachi"]
[1[lint 3 3 [[00 0] [86 2] [060 0]]

[1[1int 3 3 [[430] [862] [060606]]

The buffer’s contents are only the first len(buffer) items; the other items are
inaccessible unless we reslice the buffer—something we will see how to do later
on in this section.

We created gridl as a slice of slices with an initial length of 3 (i.e., it can contain
three slices), and a capacity of 3 (since the capacity defaults to the length if it
isn’t specified). Then we set each of the grid’s outermost slices to contain their
own 3-item slices. Naturally, we could have made the innermost slices have
different lengths if we wanted.

For grid2 we had to specify every value since we created it using the composite
literal syntax and Go would have no other way of knowing how many items we
wanted. After all, we could have created a slice of different length slices—for
example, grid2 :=[][]int{{9, 7}, {8}, {4, 2, 6}}, which would make grid2 a slice
of length 3 whose slices’ lengths are 2, 1, and 3.

4.2.1. Indexing and Slicing Slices

A slice is a reference to a hidden array and slices of slices are also references to
the same hidden array. Here is an example to illustrate what this means.

S = []string{llAII, IIBII, HCII' IIDII' IIEII' HFH' IIGII}
t = s[2:6]

fmt.Println(t, s, "=", s[:4], "+", s[4:])

s[3] = "x"

t[len(t)-1] = "y"
S,

fmt.Println(t, "=t s[4, "+, s[4:])

D EF G] [ABCD] + [EF G]
x Ey G] [ABCx] + [Ey G]

[CDEF] [AB
[Cx Ey] [AB

[aNe
]

When we change the data—whether via the original s slice or from the t slice
of the s slice—the same underlying data is changed, so both slices are affected.
The code snippet also illustrates that given a slice s and an index position i (0 <
i < len(s)), s is equal to the concatenation of s[:i] and s[i:]. We saw a similar
equality in the previous chapter in reference to strings:

s == s[:1] + s[i:] // s is a string; 1 is an int; 0 <= 1 <= len(s)
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Figure 4.4 shows slice s, including all its valid index positions and the slices
used in the code snippet. The first index position in any slice is 0 and the last is
always len(s) - 1.

s[2:6]
s[:4] s[4:] Slices
IIAII IIBII IICII IIDII IIEII IIFII IIGII slice S
0 1 2 3 4 5 6

Indexes
len(s)-7 1len(s)-6 len(s)-5 Tlen(s)-4 len(s)-3 len(s)-2 len(s)-1

Figure 4.4 Anatomy of a slice

Unlike strings, slices don’t support the + or += operators. Nonetheless, it is easy
to append to slices—and also to insert and remove items, as we will see shortly
(§4.2.3, » 156).

4.2.2. Iterating Slices

One frequent requirement is to iterate over all the items in a slice. If we want
to access the items without modifying them we can use a for ... range loop; and
if we need to modify items we can use a for loop with a loop counter. Here is an
example of the former.

amounts := []float64{237.81, 261.87, 273.93, 279.99, 281.07, 303.17,
231.47, 227.33, 209.23, 197.09}

sum := 0.0

for , amount := range amounts {
sum += amount

}

fmt.Printf ("> %.1f - %.1f\n", amounts, sum)

z [237.8 261.9 273.9 280.0 281.1 303.2 231.5 227.3 209.2 197.1] - 2503.0

The for ... range loop assigns a 0-based loop counter, which in this case we have
discarded using the blank identifier (), and a copy of the corresponding item
from the slice. The copy is cheap even for strings (since they are passed by
reference). This means that any changes that are applied to the item affect only
the copy, not the item in the slice.

Naturally, we can use slicing to iterate over just a portion of the slice. For
example, if we just wanted to iterate over the first five items we would write for
_, amount := range amounts[:5].

If we want to modify the items in the slice we must use a for loop that just
provides valid slice indexes and not copies of the slice’s items.
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for i := range amounts {
amounts[i] *= 1.05
sum += amounts[i]

}

fmt.Printf ("> %.1f - %.1f\n", amounts, sum)

X [249.7 275.0 287.6 294.0 295.1 318.3 243.0 238.7 219.7 206.9] - 2628.1

Here we have increased each item in the slice by 5% and accumulated their
sum.

Slices can, of course, contain custom items. Here is a custom type with a single
custom method.

type Product struct {
name string
price float64

}

func (product Product) String() string {
return fmt.Sprintf("%s (%.27)", product.name, product.price)

}

This defines the Product type as a struct with string and float64 fields. We have
also defined a String() method to control how Go prints Product items using
the %v verb. (We discussed print verbs earlier; §3.5, 93 <. We briefly introduced
custom types and methods in §1.5, 21 <; much more coverage is provided in
Chapter 6.)

products := []*Product{{"Spanner", 3.99}, {"Wrench", 2.49},
{"Screwdriver", 1.99}}

fmt.Println(products)

for , product := range products {
product.price += 0.50

}

fmt.Printin(products)

[Spanner (3.99) Wrench (2.49) Screwdriver (1.99)]
[Spanner (4.49) Wrench (2.99) Screwdriver (2.49)]

Here we have created a slice of pointers to Products ([]1*Product), and immedi-
ately initialized the slice with three *Products. This works because Go is smart
enough to realize that a []*Product requires pointers to Products. What we have
written is really a shorthand for products := []*Product{&Product{"Spanner",
3.99}, &Product{"Wrench", 2.49}, &Product{"Screwdriver", 1.99}}. (Recall from
§4.1, 140 <, that we can use the &Type{} syntax to create a new value of the type
and immediately get a pointer to it.)
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If we had not defined a Product.String() method the %v verb (which is used im-
plicitly by fmt.Println() and similar functions) would simply print the memory
addresses of the Products rather than the Products themselves. Notice also that
the Product.String() method takes a Product value, not a *Product—this isn’t
a problem, though, since Go is smart enough to dereference *Products to make
them work with custom methods that take Product values.*

We noted earlier that the for ... range loop cannot be used to modify the items
it iterates over. Yet here we have successfully incremented all the prices in
the products slice. At each iteration the product variable is assigned a copy of
a *Product; this is a pointer that points to the same underlying Product as the
corresponding one in the products slice. Thus, the modification we are applying
is to the pointed-to Product value, not to the copy of the *Product pointer.

4.2.3. Modifying Slices

If we need to append to a slice we can use the built-in append() function. This
function takes the slice to be appended to and one or more individual items to
append. If we want to append a slice to a slice we must use the ... (ellipsis)
operator to tell Go to pass the slice to be added as individual values. The values
to append must be of the same type as the slice’s value type. In the case of a
string we can append its individual bytes to a byte slice by using the ellipsis
syntax.

[Istring{"A", "B", "C", "D", "E", "F", "G"}

:= []string{"K", "L", "M", "N"}

:= [lstring{"m", "n", "0o", "p", "g", "r"}

append(s, "h", "i", "j") // Append individual values

append(s, t...) // Append all of a slice's values
append(s, u[2:5]...) // Append a subslice

:= []byte{'U", '"V'}

letters := "wxy"

b = append(b, letters...) // Append a string's bytes to a byte slice
fmt.Printf("%v\n%s\n", s, b)

[ABCDEFGhijKLMNODGPGQ]
UVwxy

O unu un nu o ~+ un
]

The built-in append() function takes a slice and one or more values and returns
a (possibly new) slice which has the original slice’s contents, plus the given value
or values as its last item or items. If the original slice’s capacity is sufficient for
the new items (i.e., its length plus the number of new items is within its capac-

* One compiler does this as follows. Whenever a method is created that operates on a value, say it
is called Method(), a wrapper method of the same name and signature is created that has a pointer
receiver—in effect, func (value *Type) Method() { return (*value).Method() }.
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ity), append() puts the new value or values in the empty position or positions at
the end and returns the original slice with its length increased by the number
of items added. If the original slice doesn’t have sufficent capacity, the append()
function creates a new slice under the hood and copies the original slice’s items
into it, plus the new value or values at the end, and returns the new slice—hence
the need to assign append()’s return value to the original slice variable.

It sometimes occurs that we want to insert items at the front or in the middle
of a slice, not just at the end. Here are some examples that use a custom
InsertStringSliceCopy() function that takes a slice to insert into, a slice to insert,
and the index position where the insertion should be made.

s := []string{"M", "N", "O", "P", "Q", "R"}

x := InsertStringSliceCopy(s, []string{"a", "b", "c"}, 0) // At the front
y := InsertStringSliceCopy(s, [Ilstring{"x", "y"}, 3) // In the middle
z := InsertStringSliceCopy(s, [Istring{"z"}, len(s)) // At the end
fmt.Printf("sv\n%sv\nsv\nsv\n", s, x, vy, z)

[MNOPRQRI

[abcMNOPAQR]

[MNOXxyPQR]

[MNOPQRZz]

The custom InsertStringSliceCopy() function creates a new slice (which is why
slice s is unchanged at the end of the snippet), making use of the built-in copy()
function to copy the first slice it is given and to insert the second slice.

func InsertStringSliceCopy(slice, insertion []string, index int) []string {
result := make([]string, len(slice)+len(insertion))
at := copy(result, slice[:index])
at += copy(result[at:], insertion)
copy(result[at:], slice[index:])
return result

}

The built-in copy () function takes two slices (which could be portions of the same
slice—even overlapping ones) that contain items of the same type. The function
copies the items into the first (destination) slice from the second (source) slice
and returns the number of items copied. If the source slice is empty, the copy()
function will safely do nothing. If the destination slice’s length is insufficient
to accommodate the source slice’s items, the items that don’t fit are silently
ignored. If the destination slice’s capacity is greater than its length, we can
increase its length to its capacity with the statement slice = slice[:cap(slice)],
before doing the copy.
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The slices passed to the built-in copy() function must be of the same type—ex-
cept that if the first (destination) slice is a []byte the second (source) argument
may be a []byte or a string. If the source is a string, its bytes are copied into the
first argument. (An example of this use is shown in Chapter 6, » 268.)

In the custom InsertStringSliceCopy() function, we begin by creating a new
slice (result) that is large enough to hold the items from the two slices passed
in. Then we copy a subslice of the first slice (slice[:index]) into the result slice.
Next we copy the insertion slice into the result slice starting at the position
in the result slice we have reached (at). Then we copy the rest of the first slice
(slice[index:])into the result slice at the next position we have reached (at). For
this last copy we ignore the copy() function’s return value since we don’t need it.
And finally, we return the result slice.

If the index position is 0, the slice[:index] in the first copy statement will be
slice[:0] (i.e., an empty slice), so no copying is done. Similarly, if the index is
greater than or equal to the length of the slice the slice[index:] in the last copy
statement will effectively be slice[len(slice):] (i.e., an empty slice), so again,
no copying is done.

Here is a function that has almost the same behavior as the InsertStringSlice-
Copy () function, but with much shorter and simpler code. The difference is that
the InsertStringSlice() function changes the original slice (and possibly the in-
serted slice), whereas the InsertStringSliceCopy() function does not.

func InsertStringSlice(slice, insertion []string, index int) []string {
return append(slice[:index], append(insertion, slice[index:]...)...)

}

The InsertStringSlice() function appends the end of the original slice from the
index position onto the end of the insertion slice, and then appends the resultant
slice onto the end of the original slice at the index position. The returned slice is
the original slice with the insertion applied. (Recall that append() takes a slice
and one or more values, so we must use the ellipsis syntax to transform a slice
into its individual values—and in this example, we must do so twice.)

Items can be removed from the beginning and end of slices using Go’s standard
slice syntax, but removing from the middle can require a little care. We will
start by seeing how to remove from the start, end, and middle of a slice, working
on the slice in-place. Then we will see how to take a copy of a slice with items
removed that leaves the original slice unchanged.

S := []String{“A“, “B“, HCII' “D“, “E“, HFH' IIGII}
s = s[2:] // Remove s[:2] from the front
fmt.Println(s)

[CDEFGI]
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Removing items from the start of a slice is easily achieved by reslicing.

s := []lstring{"A", "B", "C", "D", "E", "F", "G"}
s = s[:4] // Remove s[4:] from the end
fmt.Println(s)

[A B C D]

Removing items from the end of a slice is achieved by reslicing, just the same
as for removing at the start.

s := []string{llAII, IIBII, HCII' IIDII' IIEII' HFII' IIGII}
s = append(s[:1], s[5:]1...) // Remove s[1:5] from the middle
fmt.Println(s)

[A F G]

Retrieving items from the middle of a slice is easy—for example, to get the three
middle items of slice s, we would use the expression s[2:5]. But to remove items
from the middle of a slice is slightly tricky. Here we have done the removal using
the append() function to append the subslice of slice s that follows what we want
to delete, to the subslice of slice s that precedes what we want to delete, and
assigning the resultant slice back to s.

Clearly, using append() and assigning back to the original slice to remove
items, changes the original slice. Here are some examples that use a custom
RemoveStringSliceCopy() function that returns a copy of the slice it is given, but
with the items from the start and end index positions removed.

s := []string{"A", "B", "C", "D", "E", "F", "G"}

X := RemoveStringSliceCopy(s, 0, 2) // Remove s[:2] from the front
y := RemoveStringSliceCopy(s, 1, 5) // Remove s[1:5] from the middle
z := RemoveStringSliceCopy(s, 4, len(s)) // Remove s[4:] from the end
fmt.Printf("%sv\n%v\n%v\nsv\n", s, X, y, 2)

[ABCDEFG]

[CDEFG]

[A F G]

[A B C D]

Since the RemoveStringSliceCopy() function copies the items, the original slice is
left intact.

func RemoveStringSliceCopy(slice []string, start, end int) []string {
result := make([]string, len(slice)-(end-start))
at := copy(result, slice[:start])
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copy(result[at:], slice[end:])
return result

}

In the custom RemoveStringSliceCopy () function, we begin by creating a new slice
(result) that is large enough to hold the items it will contain. Then we copy a
subslice of the slice up to the start position (slice[:start])into the result slice.
Next we copy the slice from the end position (slice[end:]) into the result slice at
the position we have reached (at). And finally, we return the result slice.

It is also possible to create a simpler RemoveStringSlice() function that works on
the slice it is given rather than making a copy.

func RemoveStringSlice(slice []string, start, end int) []string {
return append(slice[:start], slice[end:]...)

}

This is a generalization of the remove from the middle example that used the
built-in append() function shown earlier. The returned slice is the original slice
with the items from the start position up to (but excluding) the end position
removed.

4.2.4. Sorting and Searching Slices

The standard library’s sort package provides functions for sorting slices of ints,
float6ds, and strings, for checking if such a slice is sorted, and for searching for
an item in a sorted slice using the fast binary search algorithm. There are also
generic sort.Sort() and sort.Search() functions that can easily be used with
custom data. These functions are listed in Table 4.2.

The way that Go sorts numbers holds no surprises, as we saw in an earlier chap-
ter (73 «). However, strings are sorted purely in terms of the bytes that repre-
sent them, as we discussed in the previous chapter (§3.2, 86 <). This means, for
example, that string sorting is case-sensitive. Here are a couple of string sorting
examples and the results they produce.

files := []string{"Test.conf", "util.go", "Makefile", "misc.go", "main.go"}
fmt.Printf("Unsorted: %sg\n", files)

sort.Strings(files) // Standard library sort function
fmt.Printf("Underlying bytes: %g\n", files)

SortFoldedStrings(files) // Custom sort function

fmt.Printf("Case insensitive: %q\n", files)

Unsorted: ["Test.conf" "util.go" "Makefile" "misc.go" "main.go"]
Underlying bytes: ["Makefile" "Test.conf" "main.go" "misc.go" "util.go"]
Case insensitive: ["main.go" "Makefile" "misc.go" "Test.conf" "util.go"]
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Table 4.2 The Sort Package’s Functions

Syntax Description/result

sort.Float64s(fs) Sorts fs of type []1float64 into ascending order
sort.Float64sAreSorted(fs) Returns true if fs of type []float64 is sorted
sort.Ints(is) Sorts is of type [1int into ascending order
sort.IntsAreSorted(is) Returns true if is of type []int is sorted
sort.IsSorted(d) Returns true if d of type sort.Interface is sorted

Returns the index position in a sorted slice in
sort.Search(size, fn) scope of length size where function fn with the
signature func(int) bool returns true (see text)

Returns the index position of f of type float64 in
sorted fs of type []float64

Returns the index position of i of type int in
sorted is of type []int

sort.SearchFloat64s(fs, f)

sort.SearchInts(is, 1)

Returns the index position of s of type string in

sort.SearchStrings(ss, s) sorted ss of type []string

sort.Sort(d) Sorts d of type sort.Interface (see text)
sort.Strings(ss) Sorts ss of type [1string into ascending order

sort.StringsAreSorted(ss) Returns true if ss of type []string is sorted

The standard library’s sort.Strings() function takes a []string and sorts the
strings in-place in ascending order in terms of their underlying bytes. If the
strings have all been encoded using the same character to bytes mappings (e.g.,
they were all created in the current program or by other Go programs), this
results in code-point ordering. The custom SortFoldedStrings() function works
in the same way, except that it sorts case-insensitively using the sort package’s
generic sort.Sort() function.

The sort.Sort() function can sort items of any type that provide the methods
in the sort.Interface, that is, items of a type that provide the Len(), Less(),
and Swap() methods, each with the required signatures. We have created a
custom type, FoldedStrings, that provides these methods. Here is the complete
implementation of the SortFoldedStrings() function, the FoldedStrings type, and
the supporting methods.

func SortFoldedStrings(slice []string) {
sort.Sort(FoldedStrings(slice))
}

type FoldedStrings []string

func (slice FoldedStrings) Len() int { return len(slice) }
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func (slice FoldedStrings) Less(i, j int) bool {

return strings.TolLower(slice[i]) < strings.ToLower(slice[j])
}
func (slice FoldedStrings) Swap(i, j int) {

slice[i], slice[j] = slice[j], slice[il]

}

The SortFoldedStrings() function simply calls the standard library’s sort.Sort()
function to do the work—having (very cheaply) converted the given []string
into a FoldedStrings value using Go’s standard conversion syntax. In general,
whenever we create a custom type that is based on a built-in type we can
promote a value of that built-in type to the custom type by doing a conversion
in this way. (Custom types are covered in Chapter 6.)

The FoldedStrings type provides the three methods needed to satisfy the sort.
Interface interface. All the methods are trivial; case-insensitivity is achieved by
using the strings.ToLower() function in the Less () method. (And if we wanted to
sort in descending order we could simply change the Less() method’s < less than
operator to a > greater than operator.)

The SortFoldedStrings() function is perfectly adequate for 7-bit ASCII (i.e., En-
glish) strings, but is unlikely to produce a satisfactory ordering for non-English
languages as we discussed in the previous chapter (§3.2, 86 <). Sorting Unicode
strings with correct accounting for non-English languages is not a trivial under-
taking. It is explained in detail in the Unicode Collation Algorithm document
(unicode.org/reports/trlo).

If we want to search a slice to find the index position of a particular item (f it
contains the item), we can easily do so using a for ... range loop.

files := []string{"Test.conf", "util.go", "Makefile", "misc.go", "main.go"}
target := "Makefile"
for i, file := range files {
if file == target {
fmt.Printf("found \"%s\" at files[%d]\n", file, i)
break

}

found "Makefile" at files[2]
Using a simple linear search like this is the only option for unsorted data and is
fine for small slices (up to hundreds of items). But for larger slices—especially

if we are performing searches repeatedly—the linear search is very inefficient,
on average requiring half the items to be compared each time.
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Go provides a sort.Search() method which uses the binary search algorithm:
This requires the comparison of only log,(n) items (where n is the number of
items) each time. To put this in perspective, a linear search of 1000000 items
requires 500 000 comparisons on average, with a worst case of 1000 000 compar-
isons; a binary search needs at most 20 comparisons, even in the worst case.

sort.Strings(files)
fmt.Printf("%q\n", files)
i := sort.Search(len(files),
func(i int) bool { return files[i] >= target })
if i < len(files) && files[i] == target {
fmt.Printf("found \"%s\" at files[%d]\n", files[i], i)
}

["Makefile" "Test.conf" "main.go" "misc.go" "util.go"]
found "Makefile" at files[0]

The sort.Search() function takes two arguments: the length of the slice to work
on and a function that compares an item in a sorted slice with a target item
using the >= operator for slices that are sorted in ascending order or the <=
operator for slices sorted in descending order. The function must be a closure,
that is, it must be created in the scope of the slice it is to work on since it must
capture the slice as part of its state. (Closures are covered in §5.6.3,» 225.) The
sort.Search() function returns an int; only if this is less than the length of the
slice and the item at that index position matches the target, can we be sure that
we have found the item we are looking for.

Here is a variation that searches a []string that has been sorted case-insensi-
tively and that assumes a lowercase target string.

target := "makefile"

SortFoldedStrings(files)

fmt.Printf("%q\n", files)

caseInsensitiveCompare := func(i int) bool {
return strings.TolLower(files[i]) >= target

}

i := sort.Search(len(files), caseInsensitiveCompare)

if i < len(files) && strings.EqualFold(files[i], target) {
fmt.Printf("found \"%s\" at files[%d]\n", files[i], 1)

}

["main.go" "Makefile" "misc.go" "Test.conf" "util.go"]
found "Makefile" at files[1]

Here, we have created the comparison function outside of the call to the
sort.Search() function. Note, though, that just like in the previous example, the
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comparison function must be a closure created within the scope of the slice it is
to work on. We could have done the comparison using the code strings.ToLower (
files[i]) == target, but have used the convenient strings.EqualFold() function
which compares two strings case-insensitively, instead.

Go’s slices are such incredibly convenient, powerful, and versatile data struc-
tures that it is difficult to imagine any nontrivial Go program that didn’t make
significant use of them. We will see them in action later in this chapter (§4.4,
>» 171).

Although slices can account for most data structure use cases, in some situations
we need to be able to store key-value pairs with fast lookup by key. This
functionality is provided by Go’s map type, the subject of the next section.

4.3. Maps

A Gomap is an unordered collection of key—value pairs whose capacity is limited
only by machine memory* Keys are unique and may only be of a type that
sensibly supports the == and != operators—so most of the built-in types can be
used as keys (e.g., int, float64, rune, string, comparable arrays and structs, and
custom types based on these, as well as pointers). Slices and noncomparable
arrays and structs (i.e., those whose items or fields don’t support == and !=), or
custom types based on them, may not be used as map keys. Pointers, reference
types, or values of any built-in or custom type can be used as values—including
maps, so it is easy to create data structures of arbitrary complexity. Go’s map
operations are listed in Table 4.3.

Maps are reference types that are cheap to pass (e.g., 8 bytes on 64-bit ma-
chines and 4 bytes on 32-bit machines), no matter how much data they hold.
Map lookups are fast—vastly faster than a linear search—although about two
orders of magnitude (i.e., 100 times) slower than direct indexing into an array
or slice, according to informal experiments® This is still so fast that it makes
sense to use maps wherever they are needed, since performance is very unlike-
ly to be a problem in practice. Figure 4.5 shows a schematic of a map of type
map[string]float64.

Since slices cannot be used as map keys it would appear that we cannot use
byte slices ([ ]byte) for keys. However, since the conversions string([]byte) and
[1byte(string) donot change the bytes, we can safely convert [ ]bytes into strings
to use as map keys and then convert them back to []bytes as needed.

A map’s keys must all be of the same type, and so must its values—although
the key and value types can (and often do) differ. With respect to a map’s val-

*The Go map data structure is sometimes called a hash map, hash table, unordered map, dictionary,
or associative array in other contexts.

®No time complexity data on maps was available at the time of this writing.
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Table 4.3 Map Operations

Syntax Description/result

mlk] = v Assigns value v to map m under key k; if k is already in the
map its previous value is discarded

delete(m, k) Deletes key k and its associated value from map m, or safely
does nothing

v = m[k] Retrieves the value that corresponds to map m’s key k and
assigns it to v; or assigns the zero value for the value’s type
to v, if k isn’t in the map

v, found := m[k] Retrieves the value that corresponds to map m’s key k and
assigns it to v and true to found; or assigns the zero value for
the value’s type to v and false to found, if k isn’t in the map

len(m) The number of items (key—value pairs) in map m

|
‘ “Venus" F»\ 0.82
| "Earth" | 1.00

"Mercury" }»\ 0.06

|
|
|
|

Figure 4.5 Anatomy of a map with string keys and float64 values

ues, just as with the items in a slice, there is no limitation in practice. This is
because the value type used could be an interface. So we could store values of
any types provided that they all met the specified interface (i.e.,had the method
or methods that the interface requires). We can even make a map’s value type
the empty interface, interface{}, which means that we could store any values
of any types—although when we accessed a value we would need to use a type
assertion or a type switch or introspection to make use of it. (Interfaces are cov-
ered in Chapter 6; reflection is covered in §9.4.9, » 427.)

Maps are created using the syntaxes:

make (map [KeyTypelValueType, initialCapacity)

make (map [KeyTypelValueType)

map [KeyType]ValueType{}

map [KeyTypelValueType{keyl: valuel, key2: value2, ..., keyN: valueN}

The built-in make() function is used to create slices, maps, and channels. When
used to create a map it creates an empty map, and if the optional initialCapacity
is specified, the map is initialized to have enough space for that number of items.
If more items are added to the map than the initial capacity allows for, the map



166 Chapter 4. Collection Types

will automatically grow to accommodate the new items. The second and third
syntaxes are exact equivalents. The last two syntaxes show how to create a map
using the composite literal syntax—this is very convenient in practice, either to
create a new empty map, or to create a map with some initial values.

4.3.1. Creating and Populating Maps

Here is an example that shows the creation and population of a map with string
keys and float64 values.

massForPlanet := make(map[string]float64) // Same as: map[string]float64{}
massForPlanet["Mercury"] = 0.06

massForPlanet["Venus"] = 0.82
massForPlanet["Earth"] = 1.00
massForPlanet["Mars"] = 0.11

fmt.Println(massForPlanet)

map[Venus:0.82 Mars:0.11 Earth:1 Mercury:0.06]

For small maps it doesn’t really matter whether we specify their initial capacity,
but for large maps doing so can improve performance. In general it is best to
specify the initial capacity if it is known (even if only approximately).

Maps use the [] index operator just like arrays and slices, only for maps the
index inside the square brackets is of the map’s key type which might not be an
int—here, for example, we have string keys.

To print the map to the console we have used the fmt.Println() function; this
uses the %v formatting verb and outputs the map’s items space-separated in key:
value form. Maps are unordered, so on a different machine the order of items
printed may be different from that shown here.

As noted earlier, pointers can be used as map keys. We will look at an example
whose keys are of type *Point and where Point is defined as follows:

type Point struct{ x, y, z int }

func (point Point) String() string {
return fmt.Sprintf("(%d,%d,%d)", point.x, point.y, point.z)

}

The Point type stores three ints. It has a String() method which ensures that
when we print a *Point Go will use the String() method rather than simply
printing the Point’s memory address.

Incidentally, we can always force Go to print a memory address by using the %p
format verb; the format verbs were covered earlier (§3.5.6, 103 <).
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triangle := make(map[*Point]string, 3)
triangle[&Point{89, 47, 27}] = "o
triangle[&Point{86, 65, 86}] = "B"
triangle[&Point{7, 44, 45}] = "y"
fmt.Printin(triangle)

map[(7,44,45):y (89,47,27):0 (86,65,86):p]

Here, we have created a map with an initial capacity and populated it with
pointer keys and string values. Each Point is created using the composite literal
syntax and using the & operator so that we get a *Point rather than a Point
value. (This syntax was introduced earlier in the chapter; 145 <.) And thanks
to the Point.String() method, when the map is printed we see the *Point values
in human-readable form.

Using pointers as map keys means that we can add two Points with the same co-
ordinates, providing that they are created separately (and so have different ad-
dresses). But what if we want the map to only store one point for any particular
set of coordinates? This can easily be done by storing Point values rather than
pointers to Points; after all, Go permits structs to be used as map keys—so long
as all their fields’ types are comparable with == and !=. Here is an example.

nameForPoint := make(map[Point]string) // Same as: map[Point]string{}
nameForPoint[Point{54, 91, 78}] = "x"

nameForPoint[Point{54, 158, 89}] = "y"

fmt.Println(nameForPoint)

map[ (54,91,78) :x (54,158,89):y]

The nameForPoint map’s keys are unique Points whose associated name strings
we can change at any time.

populationForCity := map[string]int{"Istanbul": 12610000,
"Karachi": 10620000, "Mumbai": 12690000, "Shanghai": 13680000}

for city, population := range populationForCity {
fmt.Printf("%-10s %8d\n", city, population)

}

Shanghai 13680000
Mumbai 12690000
Istanbul 12610000
Karachi 10620000

For this subsection’s final example we have created an entire map using the
composite literal syntax.
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When a for ... range loop is applied to a map and there are two variables present,
the loop returns a key and a value on each iteration until every key—value item
has been returned or the loop is broken out of. If just one variable is present
only the key is returned on each iteration. Since maps are unordered we cannot
know what particular sequence the items will come in. In many situations we
just want to iterate over all of a map’s items to access or update them, so the
iteration order doesn’t matter. However, if we want to iterate in, say, key order,
it is easy to do as we will see shortly (§4.3.4, » 170).

4.3.2. Map Lookups

Go provides two very similar syntaxes for map lookups, both of which use the []
index operator. Here are a couple of examples of the simplest syntax.

population := populationForCity["Mumbai"]
fmt.Printin("Mumbai's population is", population)
population = populationForCity["Emerald City"]
fmt.Printin("Emerald City's population is", population)

Mumbai's population is 12690000
Emerald City's population is 0

If we look up a key that is present in the map the corresponding value is re-
turned. But if the key is not present then the map’s value type’s zero value is
returned. So, in this example, we cannot tell whether the 0 returned for the
"Emerald City" key means that the population of Emerald City really is zero, or
that the city isn’t in the map. Go’s second map lookup syntax provides the solu-
tion to this problem.

city := "Istanbul"

if population, found := populationForCity[city]; found {
fmt.Printf("%s's population is %d\n", city, population)

} else {
fmt.Printf("%s's population data is unavailable\n", city)

}

city = "Emerald City"

_, present := populationForCity[city]

fmt.Printf("%qg is in the map == %t\n", city, present)

Istanbul's population is 12610000
"Emerald City" is in the map == false

If we provide two variables for the map’s [] index operator to return to, the first
will get the value that corresponds to the key (or the map’s value type’s zero
value if the key isn’t present), and the second will get true (or false if the key
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isn’t present). This allows us to check for a key’s existence in the map. And as
the example’s second lookup illustrates, we can use the blank identifier to stand
for the value if all we want to know is whether a particular key is present in
the map.

4.3.3. Modifying Maps

Items, that is, key—value pairs, can be inserted into maps and deleted from
maps. And any given key’s value can be changed. Here are a few illustrative
examples.

fmt.Println(len(populationForCity), populationForCity)
delete(populationForCity, "Shanghai") // Delete
fmt.Println(len(populationForCity), populationForCity)
populationForCity["Karachi"] = 11620000 // Update
fmt.Println(len(populationForCity), populationForCity)
populationForCity["Beijing"] = 11290000 // Insert
fmt.Println(len(populationForCity), populationForCity)

4 map[Shanghai: 13680000 Mumbai:12690000 Istanbul:12610000 Karachi:10620000]
3 map[Mumbai:12690000 Istanbul:12610000 Karachi:10620000]
3 map[Mumbai:12690000 Istanbul:12610000 Karachi:11620000]
4 map[Mumbai:12690000 Istanbul:12610000 Karachi:11620000 Beijing:11290000]

The syntax for inserting and updating map items is identical: If an item with
the given key isn’t present, a new item with the given key and value will be
inserted; and if an item with the given key is present, its value will be set to the
given value, and the original value will be discarded. And if we try to delete an
item which isn’t in the map, Go will safely do nothing.

Keys cannot be changed as such, but the effect of changing a key can be achieved
like this:

oldKey, newKey := "Beijing", "Tokyo"

value := populationForCity[oldKey]
delete(populationForCity, oldKey)
populationForCity[newKey] = value
fmt.Println(len(populationForCity), populationForCity)

4 map[Mumbai:12690000 Istanbul:12610000 Karachi:11620000 Tokyo:11296000]

We retrieve the old key’s value, delete the item which has the old key, and create
a new item with the new key and with the old key’s value.
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4.3.4. Key-Ordered Map Iteration

When producing data for human consumption we often need to present the data
in some recognizable order. Here is an example that shows how to output the
populationForCity map in alphabetical (strictly speaking, Unicode code point)
order of city.

cities := make([]string, 0, len(populationForCity))
for city := range populationForCity {
cities = append(cities, city)
}
sort.Strings(cities)
for , city := range cities {
fmt.Printf("%-10s %8d\n", city, populationForCity[city])
}

Beijing 11290000
Istanbul 12610000
Karachi 11620000
Mumbai 12690000

We begin by creating a slice of type []string with zero length (i.e., empty), but
with enough capacity to hold all of the map’s keys. Then we iterate over the
map retrieving only the keys (since we have used just one variable, city, rather
than the two needed to retrieve each key—value pair), and appending each city
in turn to the cities slice. Next, we sort the slice, and then we iterate over
the slice (ignoring the int index by using the blank identifier), looking up the
corresponding city’s population at each iteration.

The algorithm shown here—create an empty slice large enough to hold all the
map’s keys, add all the map’s keys to the slice, sort the slice, and iterate over
the slice to produce ordered output—can be applied generally for key-ordered
map iteration.

An alternative to the approach taken here is to use an ordered data structure in
the first place—for example, an ordered map. We will see an example of this in
a later chapter (§6.5.3, » 302).

Value ordering is also possible, for example, by doing a map inversion, as we will
see in the next subsection.

4.3.5. Map Inversion

We can easily invert a map whose values are unique—and whose type is
acceptable for use as map keys. Here is an example.

cityForPopulation := make(map[int]string, len(populationForCity))
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for city, population := range populationForCity {
cityForPopulation[population] = city

}

fmt.Printin(cityForPopulation)

map[12610000:Istanbul 11290000:Beijing 12696000:Mumbai 11620000:Karachi]

We begin by creating the inverted map—so whereas populationForCity is of type
map[string]lint, the cityForPopulation map is of type map[int]lstring. Then we
iterate over the original map and insert items into the inverted map using the
original map’s values as keys and its keys as values.

Of course, map inversion will fail if the values are not all unique—essentially
what happens is that the last occurrence of a nonunique value that is encoun-
tered is the one who’s key is stored (as a value) in the inverted map. This prob-
lem can be addressed by creating an inverted map that has multivalued values,
so for this example, of type map[int][]string (int keys and []string values). We
will see a practical example of this shortly (§4.4.2, » 174).

4.4. Examples

In this section we will review two small examples, the first illustrating one- and
two-dimensional slices, and the second illustrating maps, including map inver-
sion where the map’s values may not be unique, as well as slices and sorting.

4.4.1. Example: Guess Separator

In some situations we might receive a whole bunch of data files for processing
where each file has one record per line, but where different files might use dif-
ferent separators (e.g., tabs or whitespace or “”s). To be able to process such
files in bulk we need to be able to determine the separator used for each file.
The guess separator example shown in this section (in file guess separator/
guess_separator.go) attempts to identify the separator for the file it is given to
work on.

Here is an example of a typical run:

$ ./guess_separator information.dat
tab-separated

The program reads in the first five lines (or as many lines as the file contains if
fewer than five) and uses these to guess the separator that is being used.

Asusual, we will review the main() function and the functions it calls (apart from
one that’s routine), and we will skip the imports.
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func main() {

if len(o0s.Args) == 1 || os.Args[1] == "-h" || os.Args[1] == "—help" {
fmt.Printf("usage: %s file\n", filepath.Base(o0s.Args[0]))
0s.Exit(1)

}

separators := []string{"\t", "+, "|", "<"}

linesRead, lines := readUpToNLines(os.Args[1], 5)
counts := createCounts(lines, separators, linesRead)
separator := guessSep(counts, separators, linesRead)
report(separator)

}

The main() function begins by checking that a file has been given on the com-
mand line, and if one hasn’t, the function outputs a usage message and termi-
nates the program.

We create a []string to hold the separators we are interested in; for whitespace-
separated files we will adopt the convention that the separator is "" (the emp-
ty string).

The first real processing is to read in the first five lines of the file. The readUpToN-
Lines() function isn’t shown since we have already seen examples of how to read
lines from a file (and will see another example in the next subsection). The only
thing that is unusual about the readUpToNLines() function is that it reads only
the number of lines specified—or fewer if the file has fewer lines—and returns
the number of lines it actually read as well as the lines themselves.

We will discuss the remaining functions that main() calls when we show their
source code, starting with the createCounts() function.

func createCounts(lines, separators []string, linesRead int) [][]int {

counts := make([][]int, len(separators))
for sepIndex := range separators {

counts[sepIndex] = make([]int, linesRead)

for lineIndex, line := range lines {

counts[sepIndex][lineIndex] =
strings.Count(line, separators[sepIndex])

}

}

return counts

}

The purpose of the createCounts() function is to populate a matrix that holds the
counts of each separator for each line that was read.
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The function begins by creating a slice of slices of ints with the same number
of slices as there are separators. If there are four separators, this sets counts to
the slice [nil nil nil nil]. The outer for loop replaces each nil with an []int that
has as many items as the number of lines read. So each nil gets replaced with
[0 000 0], since Go always initializes with a type’s zero value.

The inner for loop is used to populate the counts. For each line the number of
occurrences of each separator is counted and counts is updated accordingly. The
strings.Count() function returns the number of occurrences of its second string
argument that occur in its first string argument.

For example, given a tab-separated file which had some bullets, spaces, and
stars in some of its fields we might get a counts matrix of [[33333] [00430]
[060000] [12200]].Each counts item is an []int which contains the counts for
the corresponding separator (tab, star, bar, bullet) for each of the five lines. So
in this case every line has three tabs, a couple of lines have stars (four in one,
three in another), three lines have bullets, and no lines have vertical bars. To
us as human readers it is obvious that here the separator is a tab, but of course,
the program must discover this for itself, and it does so using the guessSep()
function.

func guessSep(counts [][]int, separators []string, linesRead int) string {
for sepIndex := range separators {
same := true
count := counts[sepIndex][0]
for lineIndex := 1; lineIndex < linesRead; lineIndex++ {
if counts[sepIndex][lineIndex] !'= count {
same = false
break
}
}

if count > 0 && same {
return separators[sepIndex]
}
}

return

}

This function’s purpose is to find the first []int in the counts slices whose counts
are all the same—and nonzero.

The function iterates over each “row” in counts (one per separator), and initially
assumes that all the row’s counts are the same. It sets the initial count to the
first count, that is, to the number of times the separator occurs in the first line
that was read. Then it iterates over the rest, that is, over the separator counts
for each of the other lines that was read. If a different count is encountered the
inner for loop is broken out of and the next separator tried. If the inner for loop
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completes without setting same to false, and the count is greater than zero, we
have found what we want and immediately return it. If no separator matches
we return an empty string—this is our convention to mean that the fields are
whitespace-separated, or not separated at all.

func report(separator string) {
switch separator {
case "":
fmt.Println("whitespace-separated or not separated at all")
case “\t":
fmt.Println("tab-separated")
default:
fmt.Printf("%s-separated\n", separator)
}
}

The report() function is trivial, writing a simple description of the separator
used by the file that was read.

This example has shown both one- and two-dimensional slices (separators, lines,
and counts) in typical use. In the next example we will look at maps, slices,
and sorting.

4.4.2. Example: Word Frequencies

Textual analysis has a variety of uses, from data mining to the study of
language itself. In this subsection we will review an example that performs one
of the most basic forms of textual analysis: It counts the frequencies of words in
the files it is given.

Frequency data can be presented in two different but equally sensible ways—as
an alphabetical list of words with their frequencies, and as an ordered list of
frequency values and the words that have the corresponding frequencies. The
wordfrequency program (in file wordfrequency/wordfrequency.go) produces both
kinds of output, as illustrated below.

$ ./wordfrequency small-file.txt

Word Frequency
ability 1
about 1
above 3
years 1
you 128

Frequency - Words
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1 ability, about, absence, absolute, absolutely, abuse, accessible, ...
2 accept, acquired, after, against, applies, arrange, assumptions, ...
128 you
151 or
192 to

221 of
345 the

Even for a small file the number of words and the number of different frequen-
cies can be quite large, so here we have elided most of the output.

Producing the first part of the output is straightforward. We can use a map of
type map[string]int with word keys and frequency values. But to get the second
part of the output we will need to invert the map—and this isn’t quite so easy
because it is likely that more than one word will have the same frequency. The
solution is to invert to a multivalued map of typemap[int][]string, thatis,a map
whose keys are frequencies and whose values are all the words that have the
corresponding frequency.

We will begin with the program’s main() function and work top-down, and as
usual, will omit the imports.

func main() {

if len(o0s.Args) == 1 || os.Args[1] == "-h" || o0s.Args[1] == "—-help" {
fmt.Printf("usage: %s <filel> [<file2> [... <fileN>]]\n",
filepath.Base(os.Args[0]))
0s.Exit(1)
}

frequencyForWord := map[stringlint{} // Same as: make(map[string]int)

for , filename := range commandLineFiles(os.Args[1:]) {
updateFrequencies(filename, frequencyForWord)

}

reportByWords (frequencyForWord)

wordsForFrequency := invertStringIntMap(frequencyForWord)

reportByFrequency (wordsForFrequency)

}

The main() function starts by dealing with the command line and then gets down
to work.

We begin by creating the simple map that will keep track of the frequency of
each unique word in the files read in. We have used the composite literal syntax
to create the initially empty map, just to show how it is done. Once we have the
map we iterate over each filename given on the command line and for each one
attempt to update the frequencyForWord map.
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Once the first map is complete we output the first report: an alphabetical list
of all the unique words encountered and their corresponding frequencies.
Then we create an inverted version of the map and output the second report: a
numerically ordered list of frequencies and their associated words.

func commandLineFiles(files []string) []lstring {
if runtime.GO0S == "windows" {
args := make([]string, 0, len(files))
for , name := range files {
if matches, err := filepath.Glob(name); err != nil {
args = append(args, name) // Invalid pattern
} else if matches != nil { // At least one match
args = append(args, matches...)
}
}
return args
}
return files

}

The commandLineFiles() function simply returns the []string it is given on Unix-
like platforms such as Linux and Mac OS X, since on these platforms the shell
automatically does file globbing (i.e., replaces, say, *. txt with any matching text
files, e.g., README. txt, INSTALL.txt, etc.). The Windows shell (cmd.exe) does not do
file globbing, so if the user enters, say, *.txt on the command line, that is what
the program will receive. To provide reasonable cross-platform uniformity, we
do the globbing ourselves when the program is run on Windows. (Another way
to handle cross-platform differences is to have platform-specific . go files—this is
covered in a later chapter, §9.1.1.1, » 410.)

func updateFrequencies(filename string, frequencyForWord map[string]int) {
var file *o0s.File
var err error
if file, err = os.Open(filename); err != nil {
log.Println("failed to open the file: ", err)
return
}
defer file.Close()
readAndUpdateFrequencies (bufio.NewReader(file), frequencyForWord)

}

This function is used purely for the file handling. It opens the given file for
reading, defers the closing of the file to when the function returns, and passes
on the actual work to the readAndUpdateFrequencies() function. By passing the
file reader as a *bufio.Reader (produced by the bufio.NewReader() call), we ensure
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that the called function can read the file as strings line by line rather than
having to read raw bytes.

func readAndUpdateFrequencies(reader *bufio.Reader,
frequencyForWord map[stringlint) {
for {
line, err := reader.ReadString('\n")
for , word := range SplitOnNonLetters(strings.TrimSpace(line)) {
if len(word) > utf8.UTFMax ||
utf8.RuneCountInString(word) > 1 {
frequencyForWord[strings.ToLower(word)] += 1
}
}
if err !'= nil {
if err != io0.EOF {
log.Println("failed to finish reading the file: ", err)
}

break

}

The first part of this function should be very familiar by now. We create an
infinite loop and read the file line by line, breaking out of the loop when we
reach the end of the file or if an error occurs (in which case we report the error
to the user). We don’t terminate the program when we hit an error because there
might be many files to read and for this program we prefer to do as much work as
possible and report any problems that were encountered rather than stopping
at the first error.

The inner for loop is where the interesting processing is done. Any given line
might have punctuation, numbers, symbols, and other nonword characters, so
we iterate word by word having split the line into words and discarding any
non-word characters using a custom SplitOnNonLetters() function. And the
string we feed that function in the first place has any whitespace trimmed off
both ends.

We only want to include words that contain at least two letters. The easiest
way to do this is to use a one-clause if statement, that is, if utf8.RuneCountIn-
String(word) > 1, which works fine.

The simple if statement just described is potentially a bit expensive because it
will parse the entire word. So in the program we use a two-clause if statement
where the first clause takes a much cheaper approach. The first clause checks
to see if the number of bytes in the word is greater than utf8.UTFMax (which
is a constant of value 4, the maximum number of bytes required to represent
a single UTF-8 character). This is a really fast test because Go strings know
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how many bytes they contain and Go’s binary Boolean operators (&& and | |) are
short-circuiting (§2.2, 56 «). Of course, words consisting of four or fewer bytes
(e.g., four 7-bit ASCII characters or a couple of 2-byte UTF-8 characters) will
fail this first check, but that isn’t a problem because the second check (the rune
count) will be fast because it will always have four or fewer characters to count.
Isit worth using the two-clause if statement in this situation? It really depends
on the input—the more words that need processing and the longer they are, the
more potential for savings. The only way to know for certain is to benchmark
using real or at least typical data.

func SplitOnNonLetters(s string) []string {
notALetter := func(char rune) bool { return 'unicode.IsLetter(char) }
return strings.FieldsFunc(s, notALetter)

}

This function is used to split a string on nonword characters. First we create
an anonymous function that has the signature required by the strings.Fields-
Func() function and which returns true for nonletters and false for letters. Then
we return the result of calling the strings.FieldsFunc() function with the given
string and with the notALetter() function. (We discussed the strings.Fields-
Func() function in the previous chapter; 107 <.)

func reportByWords(frequencyForWord map[stringlint) {
words := make([]string, 0, len(frequencyForWord))
wordWidth, frequencyWidth := 0, 0
for word, frequency := range frequencyForWord {
words = append(words, word)
if width := utf8.RuneCountInString(word); width > wordwidth {
wordWidth = width
}
if width := len(fmt.Sprint(frequency)); width > frequencyWidth {
frequencyWidth = width
}
}
sort.Strings(words)
gap := wordWidth + frequencyWidth - len("Word") - len("Frequency")
fmt.Printf("Word %*s%s\n", gap, " ", "Frequency")
for , word := range words {
fmt.Printf("%—*s %*+d\n", wordWidth, word, frequencyWidth,
frequencyForWord[word])

}

Once the frequencyForWord map has been populated, the reportByWords() func-
tion is called to output its data. We want the output to be in alphabetical (ac-
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tually, Unicode code point) order, so we begin by creating an empty []string to
hold the words that is large enough to hold all the words in the map. We also
want to know the width in characters of the longest word and of the highest
frequency (i.e., how many digits it has) so that we can produce our output in
neat columns: The wordwidth and frequencyWidth variables are used to record
these widths.

The first for loop iterates over the items in the map. Each word is appended to
the words []string, a very cheap operation because words’s capacity is already
large enough so all that the append() function has to do is put the given word at
the len(words) index position and increment the words slice’s length by one.

For each word we count the number of characters it contains and set wordWidth
to this amount if it is larger than the existing value. Similarly, we count the
number of characters needed to represent the frequency—we can safely use
len() for this to count bytes since the fmt.Sprint() function takes a number and
returns a string with decimal digits all of which are 7-bit ASCII characters. So
at the end of the first for loop we have the widths of the two columns we want
to output.

Once the words slice has been populated we sort it. We don’t have to worry
about case-sensitivity because all the words are lowercase (this was done in the
readAndUpdateFrequencies() function; 177 <.

After sorting the words we print the two column titles. First we print “Word”,
then we print spaces so that the y of “Frequency” will be right-aligned with the
last digit of the frequencies. Thisis achieved by printing a single space (" ") with
a field width of gap characters using the %*s format specifier. An alternative
would be to use a format specifier of plain %s and to pass a string of spaces
produced by strings.Repeat(" ", gap). (String formatting was covered in the
previous chapter; §3.5,93 «.)

And finally, we print the words and their frequencies in two columns with
appropriate widths in ascending alphabetical word order.

func invertStringIntMap(intForString map[string]int) map[int][]string {
stringsForInt := make(map[int][]string, len(intForString))
for key, value := range intForString {
stringsForInt[value] = append(stringsForInt[value], key)
}
return stringsForInt

}

The function begins by creating an empty inverted map. Although we don’t
know how many items there will be, we have assumed that there will be about
the same number as in the original map—after all, there can’t be more. The
processing is straightforward: We simply iterate over the original map and use
each value as a key in the inverted map, and add each key to the inverted map’s
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corresponding slice value. Since the new map’s values are slices, no data is lost,
even if the original map has multiple keys with the same value.

func reportByFrequency(wordsForFrequency map[int][]string) {
frequencies := make([]int, O, len(wordsForFrequency))
for frequency := range wordsForFrequency {
frequencies = append(frequencies, frequency)
}
sort.Ints(frequencies)
width := len(fmt.Sprint(frequencies[len(frequencies)-1]))
fmt.Printin("Frequency - Words")
for , frequency := range frequencies {
words := wordsForFrequency|[frequency]
sort.Strings(words)
fmt.Printf("%*d %s\n", width, frequency, strings.Join(words, ", "))

}

This function is structurally very similar to the reportByWords() function. It
begins by creating a slice of frequencies which it then sorts into ascending order.
Then it computes the width needed to accommodate the largest frequency and
uses that for the first column’s width. Next, it outputs the report’s title. And
finally, it iterates over the frequencies and outputs each one with the words that
have that frequency in ascending alphabetical order, comma-separating the
words if there is more than one.

We have now reviewed this chapter’s two complete examples and gained some
insight into using pointers in Go and into the power and convenience of Go’s
slice and map types. In the next chapter, we will look at how to create custom
functions; this will complete the foundations in Go procedural programming.
Once functions have been covered we will be ready to tackle object-oriented
programming, and after that, concurrent programming.

4.5. Exercises

There are five exercises, each one requiring the creation of a small function, and
drawing on the coverage of slices and maps presented in this chapter. We have
put all five functions in the same .go file (chap4 ans/chap4 ans.go), and added a
main() function that makes use of them all to make testing easier. (Proper unit
testing is covered later, in Chapter 9, §9.1.1.3, » 414.)

1. Create a function that accepts an []int and returns an []int which is a
copy of the given []int but with duplicates removed. For example, given an
argument of []int{9, 1,9,5,4,4,2,1,5,4,8,8,4,3,6,9,5,7, 5}, the
function should return []int{9, 1, 5, 4, 2, 8, 3, 6, 7}. In the chap4 ans.go
solution file the function is called UniqueInts(). The function uses composite
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literal syntax rather than the built-in make() function and is 11 lines long.
It should be quite easy to do.

2. Create a function that accepts an [][]int (i.e., a two-dimensional slice of
ints), and returns a single []int that contains all the ints from the two-di-
mensional slice’s first slice, then from its second slice, and so on. For exam-
ple, if the function is called Flatten():

irregularMatrix := [][]int{{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11},
{12, 13, 14, 15},
{16, 17, 18, 19, 20}}
slice := Flatten(irregularMatrix)
fmt.Printf("1x%d: %v\n", len(slice), slice)

1x20: [123 4567891011 12 13 14 15 16 17 18 19 20]

The Flatten() function in chap4 ans.go is a mere nine lines. The function
is slightly subtle to ensure that it works correctly even when the lengths of
the inner slices vary (asthey doin the irregularMatrix), but is quite straight-
forward.

3. Create a function that accepts an []int and a column count (as an int), and
that returns an [][]int where each inner slice’s length is equal to the given
number of columns. For example, if the argument is []int{1, 2, 3, 4, 5,
6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, here are some sample
results, each preceded by the number of columns that was passed:

3 [[123] [456] [789] [10 11 12] [13 14 15] [16 17 18] [19 20 0]]
4 [[1234] [5678] [910 11 12] [13 14 15 16] [17 18 19 20]]
5[[12345] [678910] [11 12 13 14 15] [16 17 18 19 20]]

6 [[123456] [78910 11 12] [13 14 15 16 17 18] [19 20 0 0 0 0]]

Notice that since there are 20 ints, neither 3 nor 6 columns are exact
multiples, so we have padded the last inner slice with zeros when necessary
to keep all column (i.e., inner slice) lengths the same.

The Make2D() function in chap4 ans.go is 12 lines long and makes use of a
helper function that’s 7 lines long. The Make2D() function and its helper need
a little bit of thought to get right, but aren’t difficult.

4. Create a function that accepts a []string containing the lines of an
.ini-style file and that returns a map[stringlmap[string]lstring whose keys
are group names and whose values are key—value maps of each group’s
keys and values. Blank lines and lines beginning with ; should be ignored.
Each group is indicated by a name in square brackets on its own line, and
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each group’s keys and values are indicated by one or more lines of the form
key=value. Here is an example []string that the function could process.

iniData := []string{
"; Cut down copy of Mozilla application.ini file",
"[Appl",
"Vendor=Mozilla",
"Name=Iceweasel",
"Profile=mozilla/firefox",
"Version=3.5.16",
"[Gecko]",
"MinVersion=1.9.1",
"MaxVersion=1.9.1.x*",
"[XRE]",
"EnableProfileMigrator=0",
"EnableExtensionManager=1",

Given this data, the function should return the following map which we
have “pretty-printed” to make it easier to see its structure.

map[Gecko: map[MinVersion: 1.9.1
MaxVersion: 1.9.1.%]
XRE: map[EnableProfileMigrator: 0
EnableExtensionManager: 1]
App: map[Vendor: Mozilla
Profile: mozilla/firefox
Name: Iceweasel
Version: 3.5.16]]

The Parselni() solution function assumes a group of “General” for any
key-values that are not within the scope of a group. It is 24 lines long and
might take a bit of care to get right.

5. Create a function that accepts a map[string]map[string]lstring that repre-
sents an .ini file’s data. The function should print out the data as an .ini
file with groupsin alphabetical order and keys within groups in alphabetical
order, and with a blank line between each group. For example, given the
data from the previous exercise the output should be:

[App]

Name=Iceweasel
Profile=mozilla/firefox
Vendor=Mozilla
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Version=3.5.16

[Gecko]
MaxVersion=1.9.1.
MinVersion=1.9.1

[XRE]
EnableExtensionManager=1
EnableProfileMigrator=0

*

The PrintIni() solution function is 21 lines long and should be easier to do
than the previous exercise’s ParseIni() function.
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The previous chapters described and illustrated Go’s built-in data types, in
the course of which many of Go’s statements and control structures were used,
and many small custom functions were created. In this chapter we will review
Go’s statements and control structures in more detail, and also look much more
closely at creating and using custom functions. Table 5.1 provides a list of Go’s
built-in functions, most of which have already been covered.*

Some of this chapter’s material has been seen less formally in earlier chapters,
and some of the material refers to aspects of Go programming that are covered
in subsequent chapters. Forward and backward cross-references are provided
where appropriate.

5.1. Statement Basics

Formally, Go’s syntax requires the use of semicolons (;) as statement termina-
tors in many contexts. However, as we have seen, very few semicolons are need-
ed in real Go programs. This is because the compiler will conveniently insert
semicolons automatically at the end of nonblank lines that end with an identifi-
er, a number literal, a character literal, a string literal, certain keywords (break,
continue, fallthrough, return), an increment or decrement operator (++ or --), or
a closing parenthesis, bracket, or brace (), 1, }).

Two common cases where semicolons must be manually inserted are when we
want to have two or more statements on the same line and in plain for loops
(§5.3,>» 203).

An important consequence of the automatic semicolon insertion is that an
opening brace cannot occur on its own line.

// Correct v // WRONG! (This won't compile.) X
for i :=0; 1 <5; i++ { for i :=0; 1 <5; i++
fmt.Println(i) {
} fmt.Println(i)
)3

The right-hand code snippet won’t compile because the compiler will insert a
semicolon after the ++. Similarly, if we had an infinite loop (for) with the brace
starting on the next line, the compiler would insert a semicolon after the for,
and again the code wouldn’t compile.

The asthetics of brace placement usually generate endless arguments—but
not in Go. This is partly because the automatic semicolons constrain brace
placement and partly because many Go users use the gofmt program which

*Table 5.1 does not list the built-in print() and println() functions since they should not be used.
They exist for the convenience of Go compiler implementers and may be removed from the language.
Use functions like fmt.Print() instead (§3.5, 93 <).
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Syntax
append(s, ...)

cap(x)

close(ch)

complex(r, 1)

copy(dst, src)
copy(b, s)

delete(m, k)

imag(cx)

len(x)

make(T)
make(T, n)
make(T, n, m)

new(T)

panic(x)

real(cx)

recover()

Table 5.1 Built-In Functions
Description/result

The slice it was given plus the new items at the end if the
slice’s capacity is sufficient; otherwise a new slice with the
original items plus the new items at the end (see §4.2.3,
156 <)

The capacity of slice x or the channel buffer capacity of chan-
nel x or the length of array (or the array pointed to by) x; see
also len() (see §4.2, 148 <)

Closes channel ch (but not legal for receive-only channels). No
more data can be sent to the channel. Data can continue to be
received from the channel (e.g., any sent but not yet received
values), and when there are no more values in the channel,
receivers will get the channel data type’s zero value.

A complex128 with the given r (real) and i (imaginary) parts,
both of type float64 (see §2.3.2.1, 70 <)

Copies (possibly overlapping) items from the src slice into the
dst slice, truncating if there isn’t enough room; or copies s of
type string’s bytes to b of type []1byte (see §4.2.3, 156 < and
> 268)

Deletes the item with key k from map m or safely does nothing
if there’s no such key (see §4.3, 164 <)

The imaginary part of cx of type complex128 as a float64 (see
§2.3.2.1, 70 <)

The length of slice x or the number of items queued in channel
x’s buffer or the length of array (or the array pointed to by) x or
the number of items in map x or the number of bytes in string
x; see also cap() (see §4.2.3, 156 <)

A reference to a slice, map, or channel of type T. If n is given
this is a slice’s length and capacity, or a hint to a map of how
many items to expect, or a channel’s buffer size. For slices only,
n and m may be given to specify the length and capacity (see
150 < for slices, 165 < for maps, and Chapter 7 for channels).
A pointer to a value of type T (see §4.1, 140 <)

Raises a catchable runtime exception with value x (see §5.5.1,
> 213)

The real part of cx of type complex128 as a float64 (see §2.3.2.1,
70 <)

Catches a runtime exception (see §5.5.1, » 213)
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formats Go programsin a standardized way. In fact, all the Go standard library’s
source code uses gofmt which is why the code has such a consistent layout, even
though it is the product of many different programmers’ work.*

Go supports the ++ (increment) and —- (decrement) operators listed in Table 2.4
(59 «). They are both postfix operators, that is, they must follow the operand
they apply to, and they do not return a value. These constraints prevent the
operators from being used as expressions, and mean that they cannot be used
in semantically ambiguous contexts—for example, we cannot apply one of these
operators to an argument in a function call or write i = i++ in Go (although we
could in C and C++ where the results are undefined).

Assignments are made using the = assignment operator. Variables can be both
created and assigned by using = in conjunction with var—for example, var x =5
creates a new variable x of type int and with value 5. (Exactly the same could
be achieved using var x int =5 or x :=5.) The type of the variable assigned to
must be compatible with the value being assigned. If =is used without var the
variable on its left-hand side must already exist. Multiple comma-separated
variables can be assigned to, and we can use the blank identifier (), which is
compatible with any type, to ignore any of the values being assigned. Multiple
assignments make it easy to swap two values without the need for an explicit
temporary variable—for example,a, b = b, a.

The short variable declaration operator (:=) is used to both declare a new vari-
able and assign to it in a single statement. Multiple comma-separated variables
can be used in much the same way as when using the = operator, except that
at least one nonblank variable must be new. If there is a variable that already
exists it will be assigned to without creating a new variable—unless the :=is at
the start of a new scope such asin an if or for statement’sinitializing statement
(see §5.2.1,>» 192; §5.3,>» 203).

a, b, c:=2, 3,5

for a :=7; a <8; at+ { // a is unintentionally shadowing the outer a
b :=11 // b is unintentionally shadowing the outer b
¢ =13 // c is the intended outer c v
fmt.Printf("inner: a-%d b-%d c-%d\n", a, b, c)

}

fmt.Printf("outer: a-%d b-%d c-%d\n", a, b, c)

inner: a-7 b-11 c-13
outer: a-2 b-3 c-13

* At the time of this writing, gofmt did not support line wrapping to a maximum line width, and
in some cases gofmt will join two or more wrapped lines to make one long line. The book’s source
code was automatically extracted from live examples and test programs and inserted into the book’s
camera-ready PDF file—but this is subject to a hard 75-character-per-line limit. So, for the book’s
code, gofmt was used, and then long lines were manually wrapped.
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This code snippet shows how the := operator can create “shadow” variables. In
this snippet, inside the for loop the a and b variables shadow variables from the
outer scope, and while legal, this is almost certainly a programming error. On
the other hand, there is only one ¢ variable (from the outer scope), so its usage
is correct and as intended. Variables that shadow other variables can be very
convenient, as we will see shortly, but careless use can cause problems.

As we will discuss later in the chapter, we can write return statements in func-
tions that have one or more named return values, without specifying any re-
turn values. In such cases, the returned values will be the named return values,
which are initialized with their zero values on entry to the function, and which
we can change by assigning to them in the body of the function.

func shadow() (err error) { // THIS FUNCTION WILL NOT COMPILE!

X, err := checkl() // x is created; err is assigned to

if err !'= nil {
return // err correctly returned

}

if y, err := check2(x); err !'= nil { // y and inner err are created
return // inner err shadows outer err so nil is wrongly returned!

} else {
fmt.Println(y)

}

return // nil returned

}

In the shadow() function’s first statement the x variable is created and assigned
to, but the err variable is simply assigned to since it is already declared as the
shadow() function’s return value. This works because the := operator must
create at least one nonblank variable and that condition is met here. So, if err
is not nil, it is correctly returned.

An if statement’s simple statement, that is, the optional statement that follows
the if and precedes the condition, starts a new scope (§5.2.1, » 192). So, both the
y and the err variables are created, the latter being a shadow variable. If the
err is not nil the err in the outer scope is returned (i.e., the err declared as the
shadow() function’s return value), which is nil since that was the value assigned
to it by the call to checkl(), whereas the call to check2() was assigned to the
shadowing inner err.

Fortunately, this function’s shadow problem is merely a phantom, since the Go
compiler will stop with an error message if we use a bare return when any of
the return variables has been shadowed. So, this function will not compile as
it stands.

One easy solution is to add a line at the start of the function that declares the
variables (e.g.,var x, y intor x, y :=0, 0), and change :=to = for the checkl() and
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check2() calls. (For an example of this approach see the custom americanise()
function; 35 <)

Another solution is to use an unnamed return value. This forces us to return an
explicit value, so in this case the first two return statements would both become
return err (each returning a different but correct err value), and the last one
would become return nil.

5.1.1. Type Conversions

Go provides a means of converting between different—compatible—types,
and such conversions are useful and safe. For conversions between non-
numeric types no loss of accuracy occurs. But for conversions between nu-
meric types, loss of accuracy or other effects may occur. For example, if we
have x := uint16(65000) and then use the conversion y := intl6(x), since x is
outside the intl6 range, y’s value is set to the unsurprising—but probably
undesirable—value of -536.

Here is the conversion syntax:
resultOfType := Type(expression)

For numbers, essentially we can convert any integer or floating-point number
to another integer or floating-point type (with possible loss of accuracy if the
target type is smaller than the source type). The same applies to converting
between complex128 and complex64 types. We discussed numeric conversions in
§2.3 (58 « and 69 <.

A string can be converted to a []byte (its underlying UTF-8 bytes) or to a [] rune
(its Unicode code points), and both a []byte and a []rune can be converted to a
string. A single character is a rune (i.e., an int32), and can be converted to a one-
character string. String and character conversions were covered in Chapter 3
(87 < and 88 «; also Table 3.2, 85 «, and Tables 3.8 and 3.9, 114-115 <).

Let’s look at a tiny illustrative example, starting with a simple custom type.
type StringSlice []string

This type also has a custom StringSlice.String() function (not shown) that
returns a string representation of the string slice in the form used to create a
custom StringSlice using composite literal syntax.

fancy := StringSlice{"Lithium", "Sodium", "Potassium", "Rubidium"}
fmt.Println(fancy)

plain := []string(fancy)

fmt.Println(plain)
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StringSlice{"Lithium", "Sodium", "Potassium", "Rubidium"}
[Lithium Sodium Potassium Rubidium]

The fancy StringSlice is printed using its own StringSlice.String() function.
But once we convert it to a plain []string, it is printed like any other []string.
(Creating custom types with their own methods is covered in Chapter 6.)

Conversions for other types will work if the expression and Type’s underlying
types are the same, or if the expression is an untyped constant that can be
represented by type Type, or if Type is an interface type and the expression
implements Type’s interface*

5.1.2. Type Assertions

A type’s method set is the set of all the methods that can be called on a value of
the type—this set is empty for types that have no methods. The Go interface{}
type is used to represent the empty interface, that is, a value of a type whose
method set includes the empty set. Since every type has a method set that
includes the empty set (no matter how many methods it has), an interface{} can
be used to represent a value of any Go type. Furthermore, we can convert an
interface{} to a value of the actual type it holds using a type switch (see §5.2.2.2,
» 197), or a type assertion, or by doing introspection with Go’s reflect package
(8§9.4.9,» 427)°

The use of variables of type interface{} (or of custom interface types) can arise
when we are handling data received from external sources, when we want to
create generic functions, and when doing object-oriented programming. To
access the underlying value, one approach is to use a type assertion using one
of these syntaxes:

result0fType, boolean := expression.(Type) // Checked
resultOfType := expression.(Type) // Unchecked; panic() on failure

A successful checked type assertion returns the expression as a value of the
specified Type and true to indicate success. If the checked type assertion fails
(i.e., the expression’s type is not compatible with the specified Type), a zero value
of the specified Type and false are returned. Unchecked type assertions either
return the expression as a value of the specified Type or call the built-in panic()

*Other more obscure conversions are also possible; these are covered in the Go specification (golang.
org/doc/go_spec.html).

©Python programmers may find it helpful to think of interface{} as being like an instance of object,
and Java programmers as being like an instance of Object, although unlike Java’s Object, interface{}
can be used to represent both custom and built-in types. For C and C++ programmers, interface{}
is rather like a void* that knows what type it is.
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function which will result in program termination if the panic isn’t recovered.
(Panicking and recovery is covered later; §5.5, » 212.)

Here is a tiny example to illustrate the syntaxes in use.

var i interface{} = 99
var s interface{} = []string{"left", "right"}
j :=1i.(int) // j is of type int (or a panic() has occurred)
fmt.Printf("sT-%d\n", j, j)
if i, ok := i.(int); ok {
fmt.Printf("%T-%d\n", i, 1) // 1 is a shadow variable of type int
}
if s, ok := s.([]string); ok {
fmt.Printf("%sT-%q\n", s, s) // s is a shadow variable of type []string
}

int-99
int-99
[Istring-["left" "right"]

It is quite common when doing type assertions to use the same name for the
result variable as for the original variable, that is, to use shadow variables. And,
generally, we use checked type assertions only when we expect the expression
to be of the specified type. (If the expression could be any one of a number of
types, we can use a type switch; §5.2.2.2,>» 197.)

Note that if we printed the original i and s variables (both of type interface{})
they would be printed as an int and a []string. This is because when the fmt
package’s print functions are faced with interface{} types, they are sensible
enough to print the actual underlying values.

5.2. Branching

Go provides three branching statements: if, switch, and select—the latter is
discussed further on (§5.4.1, » 209). A branching effect can also be achieved
using a map whose keys are used to select the “branch” and whose values are
corresponding functions to call—something we will see later in the chapter
(85.6.5,>» 230).

5.2.1. If Statements
Go’s if statement has the following syntax:

if optionalStatementl; booleanExpressionl {
blockl
} else if optionalStatement2; booleanExpression2 {
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block2
} else {

block3
}

There may be zero or more else if clauses and zero or one final else clause. Each
block consists of zero or more statements.

The braces are mandatory, but a semicolon is needed only if an optional state-
ment is present. The optional statement is a simple statement in Go terminology:
This means that it may be only an expression, a channel send (using the <- oper-
ator), an increment or decrement statement, an assignment, or a short variable
declaration. If variables are created in an optional statement (e.g., using the :=
operator), their scope extends from the point of declaration to the end of the com-
plete if statement—so they exist in the if or else if they are declared in, and in
every following branch, and cease to exist at the end of the if statement.

The Boolean expressions must be of type bool. Go will not automatically convert
non-bools, so we must always use a comparison operator—for example, if i == 0.
(The Boolean and comparison operators are listed in Table 2.3, 57 <.)

We have already seen numerous examples of if statements in use, and will
see many more in the rest of the book. Nonetheless, we will look at two tiny
examples, the first to show the value of the optional simple statement, and the
second to illustrate a Go if statement idiom.

// Canonical v // Long-winded!
if o := compute(); a < 0 { {
fmt.Printf (" (%d)\n", -a) o := compute()
} else { if a <0 {
fmt.Println(a) fmt.Printf (" (%d)\n", -a)
} } else {

fmt.Println(a)
}
}

These two code snippets print exactly the same thing. The right-hand snippet
must use extra braces to limit the scope of the a variable, whereas the left-hand
snippet automatically limits the variable’s scope to the if statement.

The second if statement example is the ArchiveFileList () function which is tak-
en from the archive file list example (in file archive file list/archive file_
list.go). Later on we will use this function’s body to compare if and switch state-
ments.
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func ArchiveFilelList(file string) ([]string, error) {

if suffix := Suffix(file); suffix == ".gz" {
return GzipFilelList(file)

} else if suffix == ".tar" || suffix == ".tar.gz" || suffix == ".tgz" {
return TarFileList(file)

} else if suffix == ".zip" {

return ZipFilelList(file)
}
return nil, errors.New('unrecognized archive")

}

The example program reads the files given on the command line, and for those
archive files that it can handle (.gz, . tar, .tar.gz, .zip), it prints the name of the
archive file and an indented list of the files the archive contains.

Notice that the scope of the suffix variable created in the first if clause
extends throughout the entire if ... else if ... statement, so it is visible in every
branch, just like the a variable in the previous example.

The function could have been written using a final else statement, but it is very
common in Go to use the structure shown here: an if statement and zero or
more else if statements each of which ends with a return statement, with this
followed by a return statement rather than a final else statement that ends with
a return.

func Suffix(file string) string {
file = strings.TolLower(filepath.Base(file))
if i := strings.LastIndex(file, "."); i > -1 {
if file[i:] == ".bz2" || file[i:] == ".gz" || file[i:] == ".xz" {
if j := strings.LastIndex(file[:1i], ".");
j > -1 & strings.HasPrefix(file[j:], ".tar") {
return file[j:]
}
}
return file[i:]
}
return file

}

The Suffix() function is included for completeness: It takes a filename (which
may include a path), and returns the lowercased suffix—also called the exten-
sion—that is, the last part of the name that begins with a period. If the filename
has no period, it is returned as is (but without any path); if the filename ends in
.tar.bz2, .tar.gz, or .tar.xz then this is the suffix that is returned.
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5.2.2. Switch Statements

There are two kinds of switch statement: expression switches and type switches.
Expression switches will be familiar to C, C++, and Java programmers, whereas
type switches are specific to Go. Both kinds are syntactically very similar, but
unlike C, C++, and Java, Go’s switch statements do not fall through (so there
is no need to put a break at the end of every case); instead we can request
fallthrough explicitly by using the fallthrough statement when it is needed.

5.2.2.1. Expression Switches

Go’s expression switch statement has the following syntax:

switch optionalStatement; optionalExpression {
case expressionlListl: blockl

case expressionListN: blockN
default: blockD
}

The semicolon is required if the optional statement is present, regardless of
whether the optional expression is present. Each block consists of zero or
more statements.

If the switch has no optional expression the compiler assumes an expression of
true. The optional statement is the same kind of simple statement that can be
used with if statements (193 «). If variables are created in the optional state-
ment (e.g., using the := operator), their scope extends from the point of declara-
tion to the end of the complete switch statement—so they exist in every case and
in the default case, and cease to exist at the end of the switch statement.

The most efficient way to order cases is from most likely to least likely, although
this only really matters when there are lots of cases and the switch is executed
repeatedly. Since cases do not automatically fall through, there is no need to
put a break at the end of each case’s block. If fallthrough is wanted we simply
use a fallthrough statement. The default case is optional and if present may
appear anywhere. If no case’s expression matches, the default case is executed
if it is present; otherwise processing continues from the statement following the
switch statement.

Each case must have an expression list of one or more comma-separated
expressions whose type matches the switch statement’s optional expression’s
type. If no optional expression is present the compiler sets it to true, that is, of
type bool, in which case every expression in each case clause’s expression list
must evaluate to a bool.

If a case or default clause has a break statement, the switch statement will im-
mediately be broken out of, with control passing to the statement following the
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switch statement, or—if the break statement specifies a label—to the innermost
enclosing for, switch, or select statement that has the specified label.

Here is a very simple example of a switch statement that has no optional
statement and no optional expression.

func BoundedInt(minimum, value, maximum int) int {
switch {
case value < minimum:
return minimum
case value > maximum:
return maximum
}

return value

}

Since there is no optional expression the compiler sets the expression to true;
this means that each case clause expression must evaluate to a bool. Here both
expressions use Boolean comparison operators.

switch {
case value < minimum:
return minimum
case value > maximum:
return maximum
default:
return value

}

panic("unreachable")

Here is an alternative body for the BoundedInt() function. The switch statement
now covers every possible case, so control can never reach the end of the
function. Nonetheless, Go expects a return at the end—or a panic(), so we have
used the latter to better express the function’s semantics.

The ArchiveFileList() function shown in the previous subsection (194 <) used
an if statement to determine which function to call. Here is a naive switch
statement-based version.

switch suffix := Suffix(file); suffix { // Naive and noncanonical!
case ".gz":
return GzipFileList(file)
case ".tar":
fallthrough
case ".tar.gz":
fallthrough
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case ".tgz":
return TarFileList(file)
case ".zip":

return ZipFilelList(file)
}

This switch statement has both a statement and an expression. In this case
the expression is of type string so each case’s expression list must contain
one or more comma-separated strings to match. We have used the fallthrough
statement to ensure that all tar files are processed by the same function.

The suffix variable’s scope extends throughout the switch statement to every
case (and would extend to the default case if one was present), and ends at the
end of the switch statement since at that point the suffix ceases to exist.

switch Suffix(file) { // Canonical «/
case ".gz":

return GzipFilelList(file)
case ".tar", ".tar.gz", ".tgz":
return TarFileList(file)
".zip":
return ZipFilelList(file)

case

}

Here is a more compact and canonical version of the preceding switch state-
ment. Instead of a statement and an expression we have simply used an expres-
sion: The Suffix() function (that we saw earlier; 194 «) returns a string. And
instead of using fallthrough statements for tar files, we have used a comma-
separated list of all the matching suffixes as that case clause’s expression list.

Go’s expression switch statements are much more versatile than those provided
by C, C++, and Java, and in many cases can be used instead of—and are more
compact than—if statements.

5.2.2.2. Type Switches

As we noted when we covered type assertions (§5.1.2, 191 <), when we use
variables of type interface{} we often want to access the underlying value. If
we know the type we can use a type assertion, but if the type may be any one of
a number of possible types we can use a type switch statement.

Go’s type switch statement has the following syntax:

switch optionalStatement; typeSwitchGuard {
case typelistl: blockl

case typelistN: blockN
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default: blockD
}

The optional statement is the same as in expression switches and if statements.
And the case clauses work the same way as for expression switches except that
they list one or more comma-separated types. The optional default clause and
fallthrough statements are just the same as for expression switches, and as
usual, each block consists of zero or more statements.

The type switch guard is an expression whose result is a type. If the expression
is assigned using the := operator, the variable created has the value of the value
in the type switch guard expression, but its type depends on the case clauses: In
a case clause with one type in its type list, the variable has that type in that case,
and in case clauses that have two or more types, the variable’s type is that of the
type switch guard expression.

The kind of type testing supported by the type switch statement is generally
frowned upon by object-oriented programmers who instead prefer to rely on
polymorphism. Go supports a kind of polymorphism through duck typing (as
we will see in Chapter 6), but nonetheless there are times where explicit type
testing makes sense.

Here is an example of how we might call a simple type classifier function and
the output it produces.

classifier(5, -17.9, "ZIP", nil, true, complex(l, 1))

param #0 is an int

param #1 is a float64
param #2 is a string

param #3 is nil

param #4 is a bool

param #5's type is unknown

The classifier() function uses a simple type switch. It is a variadic function,
that is, it can accept a variable number of arguments. And since the argument
type is interface{}, the arguments can be of any types. (Functions, including
variadic functions and the ellipsis, are covered later in this chapter; §5.6,
> 219.)

func classifier(items ...interface{}) {
for i, x := range items {
switch x. (type) {
case bool:
fmt.Printf("param #%d is a bool\n", 1)
case float64:
fmt.Printf("param #%d is a float64\n", i)
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case int, int8, intl6, int32, int64:
fmt.Printf("param #%d is an int\n", i)
case uint, uint8, uintl6, uint32, uint64:
fmt.Printf("param #%d is an unsigned int\n", i)
case nil:
fmt.Printf("param #%d is nil\n", i)
case string:
fmt.Printf("param #%d is a string\n", i)
default:
fmt.Printf("param #%d's type is unknown\n", i)

}
}

The type switch guard used here has the same format as a type assertion, that
is,variable. (Type),but using the keyword type instead of an actual type to stand
for any type.

Sometimes we might want to access an interface{}’s underlying value as well
as its type. This can be done by making the type switch guard an assignment
(using the := operator), as we will see in a moment.

One common use case for type testing is when we are dealing with data from
external sources. For example, if we are parsing data encoded using JSON
(JavaScript Object Notation), we must somehow convert the data to the corre-
sponding Go data types. This can be done using Go’s json.Unmarshal() function.
If we give the function a pointer to a struct with fields that match the JSON
data, this function will populate the struct’s fields converting each item of JSON
data into the data type of its corresponding struct field. But if we do not know
the JSON data’s structure in advance we cannot give the json.Unmarshal() func-
tion a struct. In such cases we can give the function a pointer to an interface{}
which the json.Unmarshal() function will set to refer to a map[string]interface{}
whose keys are JSON field names and whose values are the corresponding val-
ues stored as interface{}s.

Here is an example that shows how we can unmarshal a raw JSON object of
unknown structure and how we can create and print a corresponding string
representation of the JSON object.

MA := []byte( {"name": "Massachusetts", "area": 27336, "water": 25.7,
"senators": ["John Kerry", "Scott Brown"]}")
var object interface{}
if err := json.Unmarshal(MA, &object); err != nil {
fmt.Println(err)
} else {
jsonObject := object.(map[string]linterface{}) ©
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fmt.Printin(jsonObjectAsString(jsonObject))
}

{"senators": ["John Kerry", "Scott Brown"], "name": "Massachusetts",
"water": 25.700000, "area": 27336.000000}

If no error occurred when unmarshaling, the object variable of type interface{}
will refer to a variable of type map[string]linterface{} whose keys are the JSON
object’s field names. The jsonObjectAsString() function accepts a map of this
type and returns a corresponding JSON string. We use an unchecked type
assertion (199 <, @) to convert the object of type interface{} to the jsonObject
variable of type map[string]interface{}. (Note that the output shown here is
split over two lines to fit the book’s page width.)

func jsonObjectAsString(jsonObject map[string]interface{}) string {
var buffer bytes.Buffer
buffer.WriteString("{")
comma := ""
for key, value := range jsonObject {
buffer.WriteString(comma)
switch value := value.(type) { // shadow variable @
case nil: @
fmt.Fprintf(&buffer, "%qg: null", key)
case bool:
fmt.Fprintf(&buffer, "%q: %t", key, value)
case float64:
fmt.Fprintf(&buffer, "%q: %f", key, value)
case string:
fmt.Fprintf(&buffer, "%q: %q", key, value)
case []interface{}:
fmt.Fprintf(&buffer, "%q: [", key)
innerComma := ""
for , s := range value {
if s, ok := s.(string); ok { // shadow variable ©
fmt.Fprintf(&buffer, "%s%q", innerComma, s)

innerComma = ", "
}
}
buffer.WriteString("]")
}
comma = ", "

}
buffer.WriteString("}")
return buffer.String()



5.2. Branching 201

This function converts a map representing a JSON object and returns a corre-
sponding string of the object’s data in JSON format. JSON arrays inside maps
representing JSON objects are themselves represented by the []interface{}
type. The function makes one simplifying assumption regarding JSON arrays:
It assumes that they have only string items.

To access the data we use a for ... range loop (§5.3, » 203) over the map’s keys
and values and use a type switch to access and handle each different value type.
The switch’s type switch guard (200 <, @) assigns the value (of type interface{})
to a new variable called value which has the type of the matching case. This is
a situation where it makes sense to shadow a variable (although we are free to
create a new variable if we wish). So, if the interface{} value’s type is bool, the
inner value will be a bool and will match the second case, and similarly for the
other cases.

To write the values to the buffer we have used the fmt.Fprintf() function since
this is more convenient than writing, say, buffer.WriteString(fmt.Sprintf(...))
(200 <, ®). The fmt.Fprintf() function writes to the io.Writer passed as its first
argument. A bytes.Buffer is not an io.Writer—but a *bytes.Buffer is, which is
why we pass the buffer’s address. This matter is covered more fully in Chap-
ter 6, but in brief, io.Writer is an interface that can be fulfilled by any value
that provides a suitable Write() method. The bytes.Buffer.Write() method
takes a pointer receiver (i.e., a *bytes.Buffer, not a bytes.Buffer value), so only a
*bytes.Buffer fulfills the interface, which means that we must pass the buffer’s
address to the fmt.Fprintf() function, not the buffer value itself.

If the JSON object contains JSON arrays, we use an inner for ... range loop to
iterate over each of the []interface{}’s items and use a checked type assertion
(200 <, ®) which means that we add items to our output only if they really are
strings. Again, we use a shadow variable (this time s of type string), since we
don’t want the interface{}, but rather the value it refers to. (Type assertions
were covered earlier; §5.1.2, 191 <)

Of course, if we knew the original JSON object’s structure in advance we could
simplify the code a great deal. We would need a struct to hold the data and a
method for outputting it in string form. Here is the code to unmarshal and print
in such cases.

var state State
if err := json.Unmarshal(MA, &state); err !'= nil {
fmt.Println(err)

}
fmt.Println(state)

{"name": "Massachusetts", "area": 27336, "water": 25.700000,
"senators": ["John Kerry", "Scott Brown"]}
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This code looks very similar to the code we had before. However, there is no need
for a jsonObjectAsString() function; instead we need to define a State type and
a corresponding State.String() method. (Once again, we had to split the output
over two lines to fit the book’s page width.)

type State struct {
Name string
Senators []string
Water float64
Area int

}

The struct is similar to ones we have seen before. Note, though, that each
field must begin with an uppercase letter to make it exported (public) since the
json.Unmarshal() function can only populate exported fields. Also, although Go’s
encoding/json package does not distinguish between different numeric types—it
treats all JSON numbers as float64s—the json.Unmarshal() function is smart
enough to populate fields of other numeric types as necessary.

func (state State) String() string {

var senators []string

for , senator := range state.Senators {
senators = append(senators, fmt.Sprintf("%q", senator))

}

return fmt.Sprintf(
“{"name": %q, "area": %d, "water": %f, "senators": [%s]},
state.Name, state.Area, state.Water, strings.Join(senators, ", "))

}

This method returns a State value as a JSON data string.

Most Go programs should not need type assertions and type switches; and even
when they are needed, their use should be fairly rare. One use case is where
we are passing values that satisfy one interface and want to check if they
also satisfy another. (This topic is covered in Chapter 6; e.g., §6.5.2, » 289.)
Another use case is when data from external sources must be converted into Go
data types. For ease of maintenance, it is almost always best that such code is
isolated from the rest of the program. This allows the program to work wholly in
terms of Go data types and means that any maintenance needed due to changes
to the format or types received from external sources can be localized.
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5.3. Looping with For Statements

Go uses two kinds of for statements for looping, plain for statements and for ...
range statements. Here are their syntaxes:

for

}

for

for

for

for

for

for

for

for

for

}

{ // Infinite loop
block

booleanExpression { // While loop
block

optionalPreStatement; booleanExpression; optionalPostStatement { @
block

index, char := range aString { // String per character iteration @
block

index := range aString { // String per character iteration ©
block // char, size := utf8.DecodeRuneInString(aString[index:])

index, item := range anArrayOrSlice { // Array or slice iteration @
block

index := range anArrayOrSlice { // Array or slice iteration ©
block // item := anArrayOrSlice[index]

key, value := range aMap { // Map iteration ®
block

key := range aMap { // Map iteration @
block // value := aMap[key]

item := range aChannel { // Channel iteration
block

The braces are mandatory, but a semicolon is only needed if an optional pre-
or post-statement is used (@); both statements must be simple statements. If
variables are created in an optional statement or to capture the values produced
by a range clause (e.g., using the := operator), their scope extends from the point
of declaration to the end of the complete for statement.
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The Boolean expression in the plain for loop syntax (203 <, @) must be of
type bool since Go will not automatically convert non-bools. (The Boolean and
comparison operators are listed in Table 2.3, 57 <)

The second for ... range over a string syntax (203 <, ®) gives byte offset indexes.
For a 7-bit ASCII string s, of value "XabYcZ", this produces indexes 0, 1, 2, 3, 4,
5. But for a UTF-8 string s, of value "XaBYyZ", the indexes produced are 0, 1, 3, 5,
6, 8. The first for ... range over a string syntax (203 <, ®) is almost always more
convenient than the second (203 <, ©).

The second for ... range over an array or slice syntax (203 <, ®) produces item
indexes from 0 to len(slice) - 1 for nonempty slices or arrays. This syntax and
the first for ... range over an array or slice syntax (203 <, @) are often useful.
These two syntaxes in particular account for why fewer plain for loops (203 <«
Q) are needed in Go programs.

The for ... range loops over map key—value items (203 <, ®) and over map keys
(203 <«, @) produce the items or keys in an arbitrary order. If sorted order is
required one solution is to use the second syntax (203 <, @) and populate a slice
with the keys and then sort the slice—we saw an example of this in the previous
chapter (§4.3.4, 170 <). Another solution is to use an ordered data structure in
the first place—for example, an ordered map. We will see an example of this in
the next chapter (§6.5.3, » 302).

If any of the syntaxes (203 <, ®-0) are used on an empty string, array, slice, or
map, the for loop harmlessly does nothing and the flow of control continues at
the following statement.

A for loop can be broken out of at any time with a break statement, with control
passing to the statement following the for loop, or—if the break statement
specifies a label—to the innermost enclosing for, switch, or select statement
that has the specified label. It is also possible to make the flow of control return
to the for loop’s condition or range clause to force the next iteration (or the end
of the loop), by using a continue statement.

We have already seen numerous examples of for statements in use; these in-
clude for ... range loops (89 <, 172 <, and 180 <), infinite loops (23 <« and 45 <),
and the plain for loop (100 <) that is needed less frequently in Go since the other
loops are often more convenient. And we will, of course, see many more for loop
examples in the rest of the book, including some later in this chapter;so here we
will confine ourselves to one small example.

Suppose that we have two-dimensional slices (e.g., of type [][]int), and want
to search them to see if they contain a particular value. Here are two ways we
can perform the search. Both use the second for ... range over an array or slice
syntax (203 <, ©).
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found := false found := false
for row := range table { FOUND:
for column := range table[row] { for row := range table {
if table[row][column] == x { for column := range table[row] {
found = true if table[row][column] == x {
break found = true
} break FOUND
} }
if found { }
break }
}
}

A label is an identifier followed by a colon. Both code snippets achieve the
same thing but the right-hand snippet is shorter and clearer because as soon
as the searched-for value (x) is found, it breaks to the outer loop by using a
break statement that specifies a label. The advantages of breaking to a label
are even greater if we are in a deeply nested series of loops (e.g., iterating over
three-dimensional data).

Labels can be applied to for loops, switch statements, and select statements.
Both break and continue statements can specify labels and can be used inside
for loops. It is also possible to use break statements—either bare or specifying
a label—inside switch and select statements.

Labels can also appear as statements in their own right in which case they may
be the targets of goto statements (using the syntax goto label). If a goto state-
ment jumps past any statement that creates a variable, the Go program’s be-
havior is undefined—if we are lucky it will crash, but probably it will continue
to run and produce spurious results. One use case for goto statements is when
automatically generating code, since in this circumstance goto can be convenient
and the concerns about spaghetti code don’t necessarily apply. Although, at the
time of this writing, more than 30 of Go’s source files use goto statements, none
of the book’s examples use the goto statement, and we advocate avoiding it.*

5.4. Communication and Concurrency
Statements
Go’s communication and concurrency features are covered in Chapter 7, but for

completeness of our coverage of procedural programming we will describe their
basic syntax here.

* goto statements have been generally despised since Edsger Dijkstra’s famous 1968 letter titled
“Go-to statement considered harmful” (www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF).
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A goroutine is a function or method invocation that executes independently and
concurrently in relation to any other goroutines in a program. Every Go pro-
gram has at least one goroutine, the main goroutine in which the main pack-
age’s main() function executes. Goroutines are rather like lightweight threads
or coroutines, in that they can be created in large numbers (whereas even small
numbers of threads can consume a huge amount of machine resources). Go-
routines all share the same address space, and Go provides locking primitives
to allow data to be safely shared across goroutines. However, the recommended
approach to concurrent Go programming is to communicate data, rather than to
share it.

A Go channel is a bidirectional or unidirectional communication pipe that
can be used to communicate (i.e., send and receive) data between two or more
goroutines.

Between them, goroutines and channels provide a means of lightweight (.e.,
scalable) concurrency that does not use shared memory and so does not require
locking. Nonetheless, as with all other approaches to concurrency, care must be
exercised when creating concurrent programs and maintenance is usually more
challenging than for nonconcurrent programs. Most operating systems are ex-
cellent at running multiple programs at the same time, so exploiting this can
reduce maintenance—for instance, by running multiple programs (or multiple
copies of the same program) each operating on different data. Good program-
mers write concurrent programs only when the approach has clear advantages
that outweigh the increased maintenance burden.

A goroutine is created using the go statement with the following syntaxes:

go function(arguments)
go func(parameters) { block }(arguments)

We must either call an existing function or call an anonymous function created
on the spot. The function may have zero or more parameters just like any other
function, and if it has parameters, corresponding arguments must be passed the
same as with any other function call.

Execution of the called function begins immediately—but in a separate
goroutine—and execution of the current goroutine (i.e., the one that has the go
statement) resumes immediately from the next statement. So, after a go state-
ment, there are at least two goroutines running, the original one (initially the
main goroutine), and the newly created one.

In rare cases it is sufficient to start off a bunch of goroutines and wait for them
all to finish, with no communication necessary. In most situations, though,
goroutines need to work cooperatively together, and this can best be achieved by
giving them the ability to communicate. Here are the syntaxes used for sending
and receiving data:
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channel <- value // Blocking send

<-channel // Receive and discard

X := <-channel // Receive and store

X, ok := <-channel // As above & check for channel closed & empty

Nonblocking sends are possible using the select statement, and to some extent
using buffered channels.

Channels are created with the built-in make() function with these syntaxes:

make (chan Type)
make (chan Type, capacity)

If no buffer capacity is specified the channel is synchronous, so it will block until
the sender is ready to send and the receiver is ready to receive. If a capacity is
given the channel is asynchronous and communication will progress without
blocking so long as there is unused capacity for sends and there is data in the
channel to be received.

Channels are bidirectional by default, but we can make them unidirectional
if we want to—for example, to better express our semantics in a way that
the compiler can enforce. In Chapter 7 we show how to create unidirectional
channels, and from then on use unidirectional channels whenever appropriate.

Let’s put all the syntax just discussed in context with a tiny example* We will
write a createCounter() function which will return a channel that will send
an int whenever we ask to receive from it. The first value received will be the
start value that we pass to the createCounter() function and each subsequent
value will be one more than the one before. Here is how we might create two
independent counter channels (each operating in its own goroutine), and the
results they produce.

counterA := createCounter(2) // counterA is of type chan int
counterB := createCounter(102) // counterB is of type chan int
for i :=0; 1 <5; i++ {

a := <-counterA

fmt.Printf("(A-%d, B-%d) ", a, <-counterB)
}
fmt.Println()

(A-2, B-102) (A-3, B-103) (A-4, B-104) (A-5, B-105) (A-6, B-106)
We have shown the receives in two different ways just to show how it is done.

The first receive assigns the received value to a variable, and the second passes
the received value as an argument to a function.

*This example was inspired by Andrew Gerrand’s blog, nf.id.au/concurrency-patterns—a-source-of
-unique-numbe. (There really isn’t an “r” on the end.)
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The two calls to the createCounter() function are made in the main goroutine,
and the two other goroutines, each one created by createCounter(), are both
initially blocked. In the main goroutine, as soon as we attempt to receive from
one of the channels a send takes place and we receive the value. Then the
sending goroutine is blocked again, waiting for a new receive request. The two
channels are “infinite”, in that they can always send a value. (Of course, if we
reach the int limit the next value will wrap.) Once the five values we want have
been received from each channel the channels are again blocked and ready for
use later on.

How can we get rid of the goroutines that we are using for the counter channels
if they are no longer needed? This requires us to get them to break out of their
infinite loops, so that they stop sending more data, and then to close the channels
they are using. We will see one way to do this in the following subsection—and,
of course, Chapter 7 which is devoted to concurrency has much more coverage.

func createCounter(start int) chan int {
next := make(chan int)
go func(i int) {
for {
next <- 1
i++
}
}(start)
return next

}

This function accepts a starting value and creates a channel for sending and
receiving ints. It then begins executing an anonymous function in a new go-
routine, passing it the start value. The function has an infinite loop that simply
sends an int and then increments the int at each iteration. Because the chan-
nel was created with zero capacity the send blocks until a receive is requested
from the channel. The blocking only affects the anonymous function’s goroutine,
so the rest of the program’s goroutines can continue to run unconcerned. Once
the goroutine has been set running (and, of course, at this point it immediately
blocks), the function’s following statement is immediately executed, and this re-
turns the channel to its caller.

In some situations we may have multiple goroutines executing, each with its
own communication channel. We can monitor their communications using a
select statement.



5.4. Communication and Concurrency Statements 209

5.4.1. Select Statements

Go’s select statement has the following syntax:*

select {
case sendOrReceivel: blockl

case sendOrReceiveN: blockN
default: blockD
}

In a select statement Go evaluates each send or receive statement in order from
first to last. If any of these statements can proceed (i.e., is not blocked), then
of those that can proceed, an arbitrary choice is made as to which one to use. If
none can proceed (i.e., if they are all blocked), there are two possible scenarios.
If a default case is present, the default case is executed and execution resumes
from the statement following the select; but if there isno default case the select
will block until at least one communication can proceed.

A consequence of the select statement’s logic is as follows. A select with no
default case is blocking and will only complete when one communication case
(receive or send) has occurred. A select with a default case is nonblocking and
executes immediately, either because a communication case occurred, or if no
communication channel is ready, by executing the default case.

To get to grips with the syntax we will review two short examples. The first ex-
ample is rather contrived but does give a good idea of how the select statement
works. The second example shows a more realistic approach to use.

channels := make([]chan bool, 6)
for i := range channels {
channels[i] = make(chan bool)
}
go func() {
for {
channels[rand.Intn(6)] <- true
}
30

In this snippet we have created six channels which can send and receive
Booleans. We have then created a single goroutine that has an infinite loop with-
in which one of the channels is chosen at random and sent a true value on every
iteration. The goroutine immediately blocks, of course, since the channels are
unbuffered and we have not yet tried to receive from any of them.

* Go’s select statement has nothing to do with the POSIX select() function used to monitor file
descriptors—for that, use the syscall package’s Select() function.
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for i := 0; i < 36; i++ {

}

fmt.

var x int

select {

case <-channels[0]:
X =1

case <-channels[1]:
X =2

case <—channels[2]:
X =3

case <-channels[3]:
X =4

case <-channels[4]:
X =5

case <-channels[5]:
X =6

}

fmt.Printf("%sd ", x)

Println()

646541212155462365154432333536522362

In this snippet we use the six channels to simulate rolls of a fair die (strictly
speaking, a pseudo-random die).* The select statement waits for one of the
channels to have something to send—the select blocks since we have not pro-
vided a default case—and as soon as one or more channels are ready to send one
case is chosen pseudo-randomly. Since the select is inside a plain for loop it is

executed a fixed number of times.

Now we will look at a more realistic example. Suppose that we want to perform
the same expensive computation on two separate data sets and that the compu-
tation produces a sequence of results. Here is a skeleton of a function that per-
forms such a computation.

func expensiveComputation(data Data, answer chan int, done chan bool) {

// setup ...
finished := false
for !finished {

// computation ...

answer <— result

}

done <- true

* For proper pseudo-random numbers see the math/rand and crypto/rand packages.
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The function is given some data to work on, and two channels. The answer
channel is used to send each result to the monitoring code and the done channel
is used to notify the monitoring code that the computation has finished.

// setup ...
const allDone = 2
doneCount := 0
answera := make(chan int)
answerf := make(chan int)
defer func() {
close(answera)
close(answerp)
()
done := make(chan bool)
defer func() { close(done) }()
go expensiveComputation(datal, answera, done)
go expensiveComputation(data2, answerP, done)
for doneCount != allDone {
var which, result int
select {
case result = <-answera:
which = "o
case result = <-answerf:
which = '’
case <-done:
doneCount++
}
if which !'=0 {
fmt.Printf("%c-%d ", which, result)
}

}
fmt.Println()

-3 B3 -0 B9 0-0 B2 09 B-3 a-6 B-1l 0-0 B8 0-8 B-5 a-0 B-0 0-3

Here is the code that sets up the channels, starts the expensive computations,
monitors progress, and cleans up at the end—and there isn’t a lock in sight.

We begin by creating two channels to accept results, answera and answerp, and
a channel to keep track of when the computations are finished, done. We create
anonymous functions in which the channels are closed and call these in defer
statements so that they will be closed when they are no longer needed, that is,
when the enclosing function returns. Next, we start off the expensive computa-
tions (in their own goroutines), giving each one its own unique data to work on,
and for communications, its own unique answer channel, and the done channel
that is shared.
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We could have given both expensive computations the same answer channels,
but if we did that we would not know which one had given which result (which
might not matter, of course). If we wanted to use the same channel and wanted
to identify the origin of any particular result we could make a single answer
channel that operated on a struct—for example, type Answer struct{ id, answer
int }.

With the expensive computations started in their goroutines (but blocked,
since their channels are unbuffered), we are ready to receive their results. The
for loop starts with fresh which and result values on every iteration, and the
blocking select statement executes an arbitrary case from those that are ready
to proceed. If an answer is ready we set which to indicate its origin and print the
origin and the result. If the done channel is ready we increment the doneCount
counter—and when this reaches the number of expensive computations we
started we know that they are all finished and the for loop ends.

Once outside the for loop we know that both expensive computations’ goroutines
will no longer send any data on the channels (since they broke out of their own
infinite for loops when they were finished; 210 «). When the function returns
the channels are closed by the defer statements and any resources they use
are released. After this the garbage collector is free to get rid of the goroutines
themselves since they are no longer executing and the channels they were using
are closed.

Go’s communication and concurrency features are very flexible and versatile;
Chapter 7 is devoted to the subject.

5.5. Defer, Panic, and Recover

The defer statement is used to defer the execution of a function or method (or
of an anonymous function created on the spot) until just before the enclosing
function or method returns, but after the return values (if any) have been
evaluated. This makes it possible to modify a function’s named return values
inside a deferred function (e.g., by assigning to them using the = assignment
operator). If more than one defer statement is used in a function or method, they
are executed in LIFO (Last In First Out) order.

The most common uses of a defer statement are to ensure that a successfully
opened file is closed when we are finished with it, to close channels that are no
longer needed, or to catch panics.

var file *os.File

var err error

if file, err = os.Open(filename); err != nil {
log.Println("failed to open the file: ", err)
return



5.5. Defer, Panic, and Recover 213

}
defer file.Close()

This is an extract from the wordfrequency program’s updateFrequencies () function
that was discussed in the previous chapter (176 <«). It shows a typical pattern
for opening a file and deferring closing the file if the open succeeded.

This pattern of creating a value and deferring some kind of close function that
cleans up the value (e.g., freeing up any resources the value uses), prior to the
value being garbage-collected, is standard in Go.* We can, of course, apply this
pattern to our own types by providing them with a Close() or Cleanup() function
that can be the subject of a defer statement, although this is rarely needed
in practice.

5.5.1. Panic and Recover

Go provides an exception handling mechanism through the use of its built-in
panic() and recover() functions. These functions could be used to provide a
general-purpose exception handling mechanism, similar to those available in
some other languages (e.g., C++, Java, and Python): But to do so is considered to
be poor Go style.

Go distinguishes between errors—things that might go wrong and that a
program should handle gracefully (e.g., a file that could not be opened)—and
exceptions—something that “cannot” happen (e.g., a precondition which should
always be true that’s actually false).

The idiomatic way to handle errorsin Go is to return an error as the last (or only)
return value from functions and methods and to always check any returned
errors. (The one case where it is common to ignore returned error values is when
printing to the console.)

For “cannot happen” situations we can call the built-in panic() function with any
value we like (e.g., a string that explains the invariant that has been broken). In
other languages we might use an assertion for these situations, but in Go we call
panic(). During early development and prior to any releases the simplest and
probably the best approach is to call panic() to terminate the program to force
problems to be impossible to ignore so that they get fixed. Once we start deploy-
ing our application it is best to avoid termination when problems occur if at all
possible, and this can be done while still leaving any remaining panic() calls in
place by adding deferred recover() calls in our packages. During recovery we
can catch and log any panics (so that they remain as visible problems), and re-
turn non-nil errors to callers who can then try to restore the program to a sane
state from which it can safely continue to run.

* In C++ destructors are used to clean up values. In Java and Python cleanup is problematic since
they cannot guarantee when or even if their finalizer()/__del () method will be called.
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When the built-in panic() function is called normal execution of the enclosing
function or method stops immediately. Then, any deferred functions or methods
are called—just as they would have been had the function returned normally.
And, finally, control is returned to the caller—as if the called function or method
had called panic(), so the process is then repeated in the caller: Execution stops,
deferreds are called, and so on. When main() is reached there is no caller to
return to, so at this point the program is terminated with a stack trace dumped
to 0s.Stderr including the value that was given to the original panic() call.

If a panic occurs the processjust described is normally what unfolds. However, if
one of the deferred functions or methods contains a call to the built-in recover()
function (which may be called only inside a deferred function or method), the
panic is stopped in its tracks. At this point we can respond to the panic any way
we like. One solution is to ignore the panic, in which case control will pass to the
caller of the function with the deferred recover() call which will then continue
to execute normally. This approach is not recommended, but if used, at the very
least the panic should be logged so that the problem isn’t completely hidden. An-
other solution is to do whatever cleanup we like and then call panic() ourselves
to continue the propagation of the problem. A more common solution is to create
an error value and set that as the (or one of the) return values of the function
with the deferred recover() call, thus turning the exception (i.e., a panic()) into
an error (i.e., an error).

In almost every case, the Go standard library uses error values rather than
panics. For our own custom packages, it is best not to use panic(); or, rather,
not to allow panic()s to leave the custom package by using recover() to capture
panics and to return errors instead, just like the standard library does.

An illustrative example is Go’s basic regular expression package, regexp. This
has a few functions for creating regular expressions, including regexp.Compile()
and regexp.MustCompile(). The first of these returns a compiled regular expres-
sion and nil, or, if the string passed to it isn’t a valid regular expression, nil and
an error. The second of these returns a compiled regular expression or it panics.
The first function is ideal for when the regular expression comes from an exter-
nal source (e.g., is entered by the user or read from a file). The second function
is best when the regular expression is hard-coded into the program since it will
ensure that when we run the program, if we made a mistake with a regular ex-
pression the program will immediately terminate due to the panic.

When should we allow panics to terminate our programs and when should
we stop them with recover()? There are two competing interests that we must
consider. As programmers we want our programs to crash as soon as possible if
there is a logical error so that we can identify and fix the problem. But we don’t
want our programs to crash at all once they have been deployed.

For problems that can be caught just by running the program (e.g., invalid
regular expressions), we should use panic() (or functions that panic such as
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regexp.MustCompile()) since we would never deploy an application that crashes
as soon as it is run. We must be careful that we do this only in functions we
are certain will be called simply by running the program—for example, the main
package’s init() function (if it has one), the main package’s main() function, and
any init() functions in our custom packages that our program imports—plus,
of course, any functions or methods that these functions call. If we use a test
suite we can, of course, extend our use of panics to any function or method that
the test suite causes to be invoked. Naturally, we must also be sure that such
potential panic cases are always exercised no matter what the program’s flow
of control.

For functions and methods that may or may not be called during any particular
run we should use recover() if we call panic() ourselves or if we call functions
or methods that panic, and turn panics into errors. Ideally recover()s should
be used as close to the panic()s they handle as possible, and where possible
and appropriate they should restore the program to a sane state before setting
their enclosing function or method’s error return value. For the main package’s
main() function we could put in a top-level “catchall” recover() that logs any
caught panics—but unfortunately, the program would then terminate after the
deferred recover() had been handled. This can be worked around, as we will
see shortly.

We will look at two examples, the first demonstrating how to convert panics into
errors, and the second showing how to make programs more robust.

Imagine we have the following function buried deep within a package we are
using, but which we cannot change because it is from a third party over whom
we have no control.

func ConvertInt64ToInt(x int64) int {
if math.MinInt32 <= x && x <= math.MaxInt32 {
return int(x)
}
panic(fmt.Sprintf("%d is out of the int32 range", x))
}

This function safely converts an int64 to an int or panics if the conversion would
produce an invalid result.

Why would a function like this use panic() in the first place? We might want to
force a crash as soon as something goes wrong so as to flush out programming
errors as early as possible. Another use case is where we have a function that
calls one or more other functions and so on, but where if anything goes wrong
we want to immediately return control to the original function—so we make
the called functions panic if they hit a problem, and catch the panic (wherever
it came from) using recover(). Normally, we want packages to report problems
as errors rather than to panic, so it is fairly common to use panic()s inside a
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package, and to use recover()s to ensure that the panics don’t leak out and are
reported as errors. And another use case is to put calls like panic("unreachable")
in places that our logic says cannot be reached (e.g., at the end of a function
which always returns by using return statements before reaching the end), or
calling panic() if a pre- or post-condition is broken. Doing this ensures that if
we ever break the logic of such functions we will soon know about it.

If none of the above reasons apply then we ought to avoid panicking and return
anon-nil error when problems occur. So, in this example, we want to return an
int and nil if a conversion succeeds and int and an error if a conversion fails.
Here is a wrapper function that achieves what we want:

func IntFromInt64(x int64) (i int, err error) {
defer func() {
if e := recover(); e != nil {
err = fmt.Errorf("sv", e)
}
)

i = ConvertInt64ToInt(x)
return i, nil

}

When this function is called, as usual, Go automatically sets the return values
to the zero values for their types, in this case 0 and nil. If the call to the custom
ConvertInt64ToInt() function returns normally, we assign its result to the i
return value, and return i along with nil to signify that no error occurred. But
if the ConvertInt64ToInt() function panics, we catch the panic in the deferred
anonymous function and set err to be an error with its text set to the textual
representation of the panic it caught.

As the IntFromInt64() function shows, it is straightforward to convert panics
into errors.

For our second example we will consider how to make a web server robust
in the face of panics. Back in Chapter 2 we reviewed the statistics example
(§2.4, 72 <). If we made a programming error in that server—for example, if we
accidentally passed nil as an image.Image value and called a method on it—we
would get a panic that without a call to recover() would terminate the program.
This is, of course, a very unsatisfactory situation if the web site is important to
us, especially if we want it to run unattended some of the time. What we want
is for the server to continue running even if a panic occurs, and to log any panics
so that we can track them down and fix them at our leisure.

We have created a modified version of the statistics example (in fact, of the
statistics ans solution), in file statistics nonstop/statistics.go. One modifica-
tion that we have made is to add an extra button to the web page, Panic!, that can
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be clicked to make a panic occur for testing purposes. The most important mod-
ification is that we have made the server able to survive panics. And to help us
see what is going on, we also log whenever a client is successfully served, when
we get a bad request, and if the server was restarted. Here is a tiny sample of
a typical log.

[127.0.0.1:41373] served 0K

[127.0.0.1:41373] served OK

[127.0.0.1:41373] bad request: '6y' is invalid
[127.0.0.1:41373] served 0K

[127.0.0.1:41373] caught panic: user clicked panic button!
[127.0.0.1:41373] served 0K

We have told the log package not to use timestamps simply to make the log
output more attractive for the book.

Before looking at the changes we have made, let us briefly remind ourselves of
the original code.

func main() {
http.HandleFunc("/", homePage)
if err := http.ListenAndServe(":9001", nil); err != nil {
log.Fatal("failed to start server", err)
}
}

func homePage(writer http.ResponseWriter, request *http.Request) {
/...
}

This web site has only one page, although the technique we will present can just
as easily be applied to sites with multiple pages. If a panic occurs that is not
caught by a recover(), that is, if a panic reaches the main() function, the server
will terminate, so this is what we must protect against.

func homePage(writer http.ResponseWriter, request *http.Request) {
defer func() { // Needed for every page
if x := recover(); x != nil {
log.Printf("[%v] caught panic: %v", request.RemoteAddr, x)
}
30
/] ...
}

For a web server to be robust in the face of panics we must make sure that every
page handler function has a deferred anonymous function that calls recover().
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This will stop any panic from being propagated. However, it cannot stop the
page handler from returning (since deferred statements are executed just be-
fore a function returns), but that doesn’t matter since the http.ListenAndServe()
function will call the page handler afresh whenever the page it handles is re-
quested.

Of course, for a large web site with lots of page handlers, adding a deferred
function to catch and log panics involves a lot of code duplication and is easy
to forget. This can be solved by creating a wrapper function that has the code
needed by each page handler. Using the wrapper we can omit the recover code
from the page handlers, so long as we change the http.HandleFunc() calls.

http.HandleFunc("/", logPanics(homePage))

Here we have the original homePage () function (i.e., one that does not have a de-
ferred function that calls recover()), relying instead on the logPanics() wrapper
function to take care of panics.

func logPanics(function func(http.ResponseWriter,
xhttp.Request)) func(http.ResponseWriter, *http.Request) {
return func(writer http.ResponseWriter, request *http.Request) {
defer func() {
if x := recover(); x != nil {
log.Printf("[%v] caught panic: %v", request.RemoteAddr, x)
}
O

function(writer, request)

}

This function takes an HTTP handler function as its sole argument and creates
and returns an anonymous function that includes a deferred (also) anonymous
function that catches and logs panics, and that calls the passed-in handler func-
tion. This has the same effect as adding the deferred panic catcher and logger
that we saw in the modified homePage() function, but is much more convenient
since we don’t have to add the deferred function to any page handler; instead we
pass each page handler function to the http.HandleFunc() using the logPanics()
wrapper.

A version of the statistics program that uses this technique is in file statis-
tics nonstop2/statistics.go. Anonymous functions are covered in the next sec-
tion’s subsection on closures (§5.6.3, » 225).
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5.6. Custom Functions

Functions are the bedrock of procedural programming and Go provides first-
class support for them. Go methods (covered in Chapter 6) are very similar to
Go functions, so this section is relevant for both procedural and object-oriented
programming.

Here are the fundamental syntaxes for function definitions:

func functionName(optionalParameters) optionalReturnType {

body

}

func functionName(optionalParameters) (optionalReturnValues) {
body

}

A function can take zero or more parameters. If there are no parameters the
parentheses are empty. If there is one or more, they are written params1 typel,
..., paramsN typeN, where paramsl is either a single parameter name or a comma-
separated list of two or more parameter names of the given type. Parameters
must be passed in the order given: There is no equivalent to Python’s named pa-
rameters, although a similar effect can be achieved as we will see later (§5.6.1.3,
> 222).

The very last parameter’s type may be preceded by an ellipsis (...). Such
functions are called variadic; this means that the function will accept zero or
more values of that type as that parameter’s value and inside the function that
parameter will be of type []type.

A function may return zero or more values. If there are none the open brace
follows the parameter’s closing parenthesis. If there is one unnamed return
value it can be written as type. If there are two or more unnamed return values,
parentheses must be used and they are written as (typel, ..., typeN). If there
are one or more named return values, parentheses must be used and they are
written as (valuesl typel, ..., valuesN typeN), where valuesl is either a single
return value name or a comma-separated list of two or more return value names
of the given type. Function return values may all be unnamed or all be named,
but not a mixture of both.

Functions that have one or more return values must have at least one return
statement—or have a call to panic() as their final statement. If return values
are unnamed, the return statement must specify as many values as there are
return values, each with a type matching the corresponding return value. If the
return values are named the return statement can either specify values just like
in the unnamed case or be bare (i.e., giving no explicit values to return). Note
that although bare returns are legal, they are considered poor style—none of the
book’s examples uses them.
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If a function has one or more return values its last executable statement must
be a return or a panic(). Go compilers are smart enough to realize that a func-
tion that ends with a panic won’t return normally and so doesn’t need a return
statement at that point. Unfortunately, current Go compilers don’t understand
that if a function ends with an if statement that has an unconditional else
statement that ends with a return statement, or a switch statement that has a
default case that ends with a return statement, no additional return is needed
afterward. A common practice in such cases is to either not end with an else or
default case and put the return statement after the if or switch, or simply put a
panic("unreachable") statement at the end—we saw examples of both approach-
es earlier (196 <).

5.6.1. Function Arguments

We have already seen many examples of custom Go functions that accept a
fixed number of arguments of specified types. By using a parameter type of
interface{} we can create functions that take arguments of any type. And
by using a parameter type that is an interface type—either our own custom
interface or one from the standard library—we can create functions that take
arguments of any type that has a specific set of methods: We will look at these
issues in Chapter 6 (§6.3, » 265).

In this subsection we will look at other possibilities regarding function argu-
ments. In the first subsubsection we will see how to use functions’ return values
directly as arguments to other functions. In the second subsubsection we will see
how to create functions that accept a variable number of arguments. And in the
final subsubsection we will discuss a technique that makes it possible to create
functions that can accept optional arguments.

5.6.1.1. Function Calls as Function Arguments

If we have a function or method that accepts one or more parameters, we can, of
course, call it with corresponding arguments. And in addition, we can call the
function with another function or method—providing that the other function
returns exactly the number of arguments required (and of the right types).

Here is an example of a function that takes the lengths of the sides of a triangle
(as three ints) and outputs the triangle’s area using Heron’s formula.

for 1 :=1; 1 <=4; i++ {
a, b, ¢ := PythagoreanTriple(i, i+l)
Al := Heron(a, b, c)
A2 := Heron(PythagoreanTriple(i, i+1))
fmt.Printf("Al == %10f == == %10f\n", Al, A2)
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Al == 6.000000 == A2 == 6.000000
Al == 30.000000 == A2 == 30.000000
Al == 84.000000 == A2 == 84.000000
Al == 180.000000 == A2 == 180.000000

First we obtain the lengths using Euclid’s formula for Pythagorean triples,
then we apply Heron’s formula using the Heron() function which takes exactly
three int arguments. Then we repeat the computation, only this time we use
the PythagoreanTriple() function directly as the Heron() function’s argument,
leaving Go to convert the PythagoreanTriple()’s three return values into the
Heron() function’s three arguments.

func Heron(a, b, c int) float64 {
o, B, vy := float64(a), float64(b), float64(c)
si= (u+B+vy) /2
return math.Sqrt(s * (s - a) * (s - B) * (s - y))

}
func PythagoreanTriple(m, n int) (a, b, ¢ int) {
if m<n {
m, n=n,m
}
return (m *m) = (n *xn), (2 *m=*n), (mx*xm) + (n *n)
}

The Heron() and PythagoreanTriple() functions are shown for completeness. We
have used named return values for the PythagoreanTriple() function purely as a
supplement to the function’s documentation.

5.6.1.2. Variadic Functions

A variadic function is one that can accept zero or more arguments for its last
(or only) parameter. Such functions are indicated by placing an ellipsis (...)
immediately before the type of the last or only parameter. Inside the function
this parameter becomes a slice of the given type. For example, if we had a
function with signature Join(xs ...string) string, the xs parameter would be of
type [1string.

Here is a tiny example that shows the use of a variadic function;in this case one
which returns the minimum of the ints it is passed. We will start by looking at
how it is called and the output it produces.

fmt.Println(MinimumInt1(5, 3), MinimumIntl(7, 3, -2, 4, 0, -8, -5))
3-8
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The MinimumIntl() function can be passed one or more ints and returns the
smallest of them.

func MinimumIntl(first int, rest ...int) int {
for , x := range rest {
if x < first {
first = x
}
}
return first

}

We could easily require a minimum of zero ints—for example, MinimumInt@(ints
...1int);or require at least two ints—for example, MinimumInt2(first, second int,
rest ...int).

If we already have a slice of ints we can still use the MinimumIntl() function to
find the minimum.

numbers := [lint{7, 6, 2, -1, 7, -3, 9}
fmt.Println(MinimumIntl(numbers[0], numbers[1:]1...))

=3}

TheMinimumIntl() function requires a single int and then zero or more additional
ints. When calling a variadic function or method we may place an ellipsis after
a slice, and this will effectively turn the slice into a sequence of zero or more
arguments each corresponding to an item in the slice. (We discussed this earlier
when discussing the built-in append() function; §4.2.3, 156 <.) So, here, we have
turned numbers[1:]... at the call site into the individual parameters6, -2, -1, 7,
-3, 9 inside the variadic function—and these are all stored in the rest slice. If
we had the MinimumInt0() function just mentioned, we could simplify the call to
MinimumIntO(numbers...).

5.6.1.3. Functions with Multiple Optional Arguments

Go does not have any direct support for creating functions with multiple
optional arguments of different types. However, it is very easy to achieve this
by using a function-specific struct and relying on Go’s guarantee that all values
are initialized to their zero value.

Suppose that we have a function for processing some custom data where the
default behavior is simply to process all the data, but where on some occasions
we would like to be able to specify the first and last items to be processed,
whether to log the function’s actions, and to provide an error handling function
for invalid items.
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One way to do this is to create a function with signature ProcessItems(items
Items, first, last int, audit bool, errorHandler func(item Item)).In this scheme,
a last value of 0 is taken to mean the last item whatever its index, and the
errorHandler function would only be called if present (i.e., if not nil). This would
mean that for every call where we wanted the default behavior we would have
to write ProcessItems(items, 0, 0, false, nil).

A much nicer way of doing things would be to have a signature of Process-
Items(items Items, options Options), where the custom Options struct type held
the other parameter values all of which default to their zero value. This would
reduce the most common call to ProcessItems(items, Options{}). Then, on those
occasions when we needed to specify one or more of the additional parameters,
we could do so by specifying their values for particular Options fields. (Full cov-
erage of structsis given later; §6.4, » 275.) Let’s see what this looks like in code,
starting with the Options struct.

type Options struct {
First int // First item to process
Last int // Last item to process (0 means process all from First)
Audit bool // If true all actions are logged
ErrorHandler func(item Item) // Called for each bad item if not nil

}

A struct can aggregate or embed one or more fields of any types we like. (The
difference between aggregation and embedding is covered in Chapter 6.) Here,
the Options struct aggregates two int fields, a bool field, and a function (i.e.,
function reference) field with the signature func(Item) where Item is some
custom type (in this case the type of one item in the custom Items type).

ProcessItems(items, Options{})
errorHandler := func(item Item) { log.Println("Invalid:", item) }
ProcessItems(items, Options{Audit: true, ErrorHandler: errorHandler})

This snippet shows two calls to the custom ProcessItems () function. The first call
processes the items using the default options (i.e., processes all items, does not
log any actions, and does not call an error handler function for invalid records).
In the second call an Options value is created that has zero values for First and
Last (and so tells the function to process all the items), and overrides the zero val-
ues for the Audit and ErrorHandler fields so that the function will log its actions
and will call the error handler whenever an invalid item is encountered.

This technique of passing a struct for optional arguments is used in the stan-
dard library—for example, by the image. jpeg.Encode() function. We will also see
the technique in use later on in Chapter 6 (§6.5.2, » 289).
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5.6.2. The init() and main() Functions

Go reserves two function names for special purposes: init() (in all packages)
and main() (only in package main). These two functions must always be defined
as taking no arguments and returning nothing. A package may have as many
init() functions as we like. However, at the time of this writing, at least one Go
compiler supports only a single init() function per package, so we recommend
using at most one init() function in each package.

Go automatically calls init() functions in packages and the main package’s
main() function, so these should not be called explicitly. For programs and
packages init() functions are optional; but every program must have a single
main() function in package main.

The initialization and execution of a Go program always begins with the main
package. If there are imports, each imported package is imported in turn. Pack-
ages are imported only once even if more than one package has an import state-
ment for the same package. (For example, several packages might import the
fmt package, but after it has been imported once it will not be imported again
since there is no need.) When a package is imported, if it has its own imports,
these are performed first. Then, the package’s package-level constants and
variables are created. And then the package’s init() functions are called (f it
has any). Eventually, all the packages imported in the main package (and their
imports and so on) are finished, at which point the main package’s constants and
variables are created and the main package’s init() functions are called (if it has
any). And finally, the main package’s main() function is called and program execu-
tion proper begins. This sequence of events is illustrated in Figure 5.1.

main pkgl pkg2 pkg3
—» 1import pkgl » import pkg2 » import pkg3 » const ...
const ... const ... const ... L
var

init()

Figure 5.1 Program startup sequence

It is possible to put go statements in init() functions, but keep in mind that
these run before main.main() is called and so must not depend on anything
created in main().
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Let’slook at an example (taken from Chapter 1’s americanise/americanise.qgo file)
to see how things work in practice.

package main

import (
"bufio"
“fmt"
/] ...
"strings"

)
var britishAmerican = "british-american.txt"

func init() {
dir, := filepath.Split(os.Args[0])
britishAmerican = filepath.Join(dir, britishAmerican)

}

func main() {
/] ...

}

Go begins with the main package and since there are imports it does them first,in
order, starting with the bufio package. The bufio package hasits own imports, so
these are performed next: In each case the imported package’s own imports are
performed first, then its package-level constants and variables are created and
then its init() functions are called. Once the bufio package has been imported,
the fmt package is imported—this package imports the strings package, so when
Go reaches the main package’s strings package import the import is skipped
since it has already been done.

When the imports have been completed the package-level britishAmerican vari-
able is created. Then the main package’s init() function is called. And finally,
the main package’s main() function is called and the program begins executing.

5.6.3. Closures

A closure is a function which “captures” any constants and variables that are
present in the same scope where it is created, if it refers to them. This means
that a closure is able to access such constants and variables when the closure is
called, even if it is called far away from the place where it was created. It doesn’t
matter if any captured constants or variables have gone out of scope—so long
as a closure refers to them they are kept alive for the closure to use.

In Go, every anonymous function (or function literal, as they are called in the Go
specification) is a closure.
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A closure is created using almost the same syntax as for a normal function,
but with one key difference: The closure has no name (so the keyword func is
immediately followed by an opening parenthesis). To make use of a closure we
normally assign it to a variable or put it in a data structure (such as a map
or slice).

We have already seen several examples of closures—for example, when we use
defer or go statements with anonymous functions these functions are closures.
We also created closures in other contexts, for example, the makeReplacerFunc-
tion() used in the americanise example (§1.6, 29 <), and when we passed anony-
mous functions to the strings.FieldsFunc() and the strings.Map() functions in
Chapter 3 (§3.6.1, 107 <), and the createCounter() (207 <) and logPanics()
(218 «) functions quoted earlier in this chapter. Nonetheless, we will review a
few tiny examples here.

One use of closuresis to provide a wrapper function that predefines one or more
of the arguments for the wrapped function. For example, suppose we want
to add different suffixes to lots of different filenames. Essentially we want to
wrap the string + concatenation operator so that one argument varies (i.e., the
filename), but the other is fixed (i.e., the suffix).

addPng := func(name string) string { return name + "
addJpg := func(name string) string { return name +
fmt.Printin(addPng("filename"), addJpg("filename"))

.png" }
.jpg" '}

filename.png filename.jpg

Both addPng and addJpg are variables that hold references to anonymous func-
tions (i.e., to closures). Such references can be called just like normal named
functions as the code snippet illustrates.

In practice, when we want to create many similar functions, rather than making
each one individually, we often use a factory function, that is, a function that
returns a function. Here is a factory function that returns functions that add a
suffix to a filename—but only if the suffix isn’t already present.

func MakeAddSuffix(suffix string) func(string) string {
return func(name string) string {
if !strings.HasSuffix(name, suffix) {
return name + suffix
}

return name

}

The MakeAddSuffix() factory function returns a closure which has captured
the suffix variable at the time the closure was created. The returned closure
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takes one string argument (e.g., a filename), and returns a string which is the
filename with the captured suffix.

addZip := MakeAddSuffix(".zip")
addTgz := MakeAddSuffix(".tar.gz")
fmt.Printin(addTgz("filename"), addZip("filename"), addZip("gobook.zip"))

filename.tar.gz filename.zip gobook.zip

This snippet shows the creation of two closures, addZip() and addTgz(), and some
calls to them.

5.6.4. Recursive Functions

A recursive function is a function that calls itself, and mutually recursive func-
tions are functions that call each other. Go fully supports recursive functions.

Recursive functions generally have the same structure: an “outcase” and a
“body”. The outcase is usually a conditional statement such as an if statement
that is used to stop the recursion based on one of the arguments passed in. The
body is where the function does some processing and includes at least one call
to itself (or to its mutually recursive partner)—this call must pass an argument
that is changed from one it received and that will be checked in the outcase to
ensure that the recursion will ultimately finish.

Recursive functions make it easy to work with recursive data structures (such
as binary trees), but they can be inefficient for, say, numerical computations.

We will start with a very simple (and inefficient) example, just to show how
recursion is done. First we will see a call to a recursive function and its output,
then we will see the recursive function itself.

for n := 0; n < 20; n++ {
fmt.Print(Fibonacci(n), " ")

}
fmt.Println()

01123581321 345589 144 233 377 610 987 1597 2584 4181

The Fibonacci() function returns the n-th Fibonaceci number.

func Fibonacci(n int) int {
if n <2 {
return n

}

return Fibonacci(n-1) + Fibonacci(n-2)
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The if statement serves as the outcase, and it guarantees that the function
will (eventually) stop recursing. This works because whatever n we give to the
function in the first place, each recursive call in the function’s body (i.e., in the
return statement) works on a value less than n, so n will always be less than 2 at
some point.

For example, if we were to call Fibonacci(4) the outcase would not be triggered
and the function would return the sum of the two recursive calls, Fibonacci(3)
and Fibonacci(2). The first of these would in turn call Fibonacci(2) (which in
turn would call Fibonacci(1) and Fibonacci(0)) and Fibonacci(1), and the second
would call Fibonacci(1) and Fibonacci(0).Once n goes below 2 it is returned. The
sequence of calls is illustrated in Figure 5.2.

Fibonacci(4)
Fibonacci(3) Fibonacci(2)
Fibonacci(2) Fibonacci(1l) Fibonacci(1l) Fibonacci(0)
Fibonacci(1l) Fibonacci(0)
1+ 0+ 1+ 1+ 0 — 3

Figure 5.2 Recursive Fibonacci

Clearly the Fibonacci() function is doing a lot of repeated calculations, even for
a tiny input value like 4. We will see how to avoid this later (§5.6.7.1, » 241).

The Hofstadter Female and Male sequences are integer sequences that are
based on mutually recursive functions. Here is some code that prints the first
20 values in each sequence, followed by the values themselves:

females := make([]int, 20)
males := make([]int, len(females))
for n := range females {
females[n] = HofstadterFemale(n)
males[n] = HofstadterMale(n)
}
fmt.Println("F", females)
fmt.Println("M", males)

FI11
M [0 0
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Here are the two mutually recursive functions that produce the sequences.

func HofstadterFemale(n int) int {
if n<=0 {
return 1
}
return n - HofstadterMale(HofstadterFemale(n-1))
}

func HofstadterMale(n int) int {
if n <=0 {
return 0
}
return n - HofstadterFemale(HofstadterMale(n-1))
}

As usual we begin each function with the outcase to ensure that the recursion
will terminate, and in the body where the recursion occurs we always recurse on
a reduced value so that eventually the outcase will be satisfied.

Some languages would have a problem with the Hofstadter functions—they
would trip up on the fact that the HofstadterFemale() function is defined before
the HofstadterMale() function and yet calls the HofstadterMale() function. Such
languages would require us to predeclare the HofstadterMale() function. Go has
no such limitation since it allows functions to be defined in any order.

Let’s look at one last recursion example, a function which determines whether
a word is a palindrome (i.e., is the same if its characters are reversed, such as
"PULLUP" and "ROTOR").

func IsPalindrome(word string) bool {
if utf8.RuneCountInString(word) <= 1 {
return true
}
first, sizeOfFirst := utf8.DecodeRuneInString(word)
last, sizeOflLast := utf8.DecodeLastRuneInString(word)
if first !'= last {
return false
}
return IsPalindrome(word[sizeOfFirst : len(word)-sizeOflLast])

}

This function starts with the outcase: If the word has zero or one character then
it is a palindrome so we return true and are finished. The algorithm we use for
the body is to compare the first and last characters: If they are different then
the word isn’t a palindrome so we can finish immediately by returning false.
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But if the first and last characters are the same then we recursively examine a
substring of the word that has the first and last characters chopped off.

In the case of "PULLUP", the function compares 'P' and 'P', then calls itself
recursively with the string "ULLU" and compares 'U' and 'U', then calls itself
with "LL" comparing 'L' and 'L', and finally calls itself with an empty string.
For "ROTOR", the function compares 'R' and 'R', then calls itself recursively with
"0T0" and compares '0' and '0', and then calls itself with "T". So in both of these
cases the function returns true. But for "DECIDED", the function compares 'D' and
'D', then calls itself recursively with "ECIDE" and compares 'E' and 'E', then
calls itself on "CID" and compares 'C' and 'D', at which point it returns false.

Recall from Chapter 3 (§3.6.3, 117 <) that the utf8.DecodeRuneInString() func-
tion returns the first character (as a rune) in the string it is given and how many
bytes that character occupies. The utf8.DecodelLastRuneInString() works simi-
larly but for the string’s last character. We can safely slice string word using the
two sizes thus obtained because we know that they will slice the string between
characters (i.e., we won’t accidentally chop a multibyte character in two).

When a function uses tail recursion, that is, when its last statement is a recur-
sive call, we can usually convert it into a simple loop. Using a loop saves the
overhead of repeated function calls; although the additional problem of limited
stack space that can affect deeply recursive functionsin some languages is much
less common in Go programs because of the way Go manages memory. (Inciden-
tally, there is an opportunity to transform the recursive IsPalindrome() function
into one that uses a simple loop in the exercises.) Of course, in some situations
recursion is the best way to express an algorithm—we will see an example of
this in Chapter 6 when we look at the omap.insert() function (» 307).

5.6.5. Choosing Functions at Runtime

Since Go functions are first-class values, it is possible to store them (i.e., refer-
ences to them) in variables—and this makes it possible to choose which function
to execute at runtime. Furthermore, Go’s ability to create closures means that
we can in effect create functions at runtime—so we could have two or more dif-
ferent implementations of the same function (each using a different algorithm),
and create just one of them to be used. We will look at both approaches in this
subsection.

5.6.5.1. Branching Using Maps and Function References

In two earlier subsections (§5.2.1, 192 « and §5.2.2.1, 195 <) we presented ex-
tracts from custom ArchiveFilelList() functions for calling a particular func-
tion based on a filename’s suffix. The first version of the function used an if
statement that spanned seven lines; the canonical version’s switch statement
spanned just five lines. But what happens if the number of different file suffix-
es we want to handle grows? For the if version we would need to add an extra
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two lines for each additional else if clause; and for the switch version we would
need to add one extra line for every new case (or two lines if we format our cases
with gofmt). If the function were for a file manager it could easily be required to
handle hundreds of suffixes, making the function very long indeed.

var FunctionForSuffix = map[string]func(string) ([]string, error){
".gz": GzipFilelList, ".tar": TarFilelList, ".tar.gz": TarFilelList,
".tgz": TarFilelList, ".zip": ZipFilelList}

func ArchiveFilelListMap(file string) ([]string, error) {
if function, ok := FunctionForSuffix[Suffix(file)]; ok {
return function(file)
}
return nil, errors.New('unrecognized archive")

}

This version of the function makes use of a map whose keys are strings (file
suffixes), and whose values are functions with the signature func(string)
([1string, error). (All of the custom functions, GzipFileList(), TarFileList(),
and ZipFilelist(), are of this type.)

The function uses the [] index operator to retrieve the function that matches the
given suffix and to set ok to true; or to return nil and false if the suffix isn’t a
map key. If there is a matching function the function is called with the filename,
and its results returned.

This function is more scalable than using an if or switch statement since no
matter how many file suffix—function items we add to the FunctionForSuffix
map, the function remains unchanged. And unlike a big if or switch statement,
map lookup speeds don’t really degrade as the number of items increases* In
addition, using a map in this way can make things clearer and also makes it
possible to add new items to the map dynamically.

5.6.5.2. Dynamic Function Creation

Another scenario that involves choosing a function at runtime is when we have
two or more functions that implement the same functionality using different
algorithms and we don’t want to commit to any of them when the program is
compiled (e.g., to allow us to choose dynamically for benchmarking or regression
testing).

For example, if we use strings that contain only 7-bit ASCII characters we can
write a much simpler version of the IsPalindrome() function we saw earlier
(229 <), and at runtime create only the version that our program actually needs.

*On a lightly loaded AMD-64 quad-core 3GHz machine we found that using a map was consistently
faster than a switch once there were 50 or more cases to consider.
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One way to do this is to declare a package-level variable with the function’s
signature and then to create the appropriate function in an init() function.

var IsPalindrome func(string) bool // Holds a reference to a function

func init() {
if len(os.Args) > 1 &&
(0s.Args[1] == "-a" || o0s.Args[1l] == "—-ascii") {
0s.Args = append(os.Args[:1], os.Args[2:]...) // Strip out arg.
IsPalindrome = func(s string) bool { // Simple ASCII-only version
if len(s) <=1 {
return true
}
if s[0] '= s[len(s)-1] {
return false

}
return IsPalindrome(s[1l : len(s)-1])
}
} else {
IsPalindrome = func(s string) bool { // UTF-8 version
// ... same as earlier ...
}

}

We have made the choice of IsPalindrome() implementation dependent on a
command-line argument. If the argument is given, we strip it out of the 0s.Args
slice (so the rest of the program doesn’t have to know or care about it), and create
a 7-bit ASCII version of the IsPalindrome() function. The stripping out is slight-
ly subtle since we want o0s.Args to have its first string and its third and subse-
quent strings but not its second string (which is "-a" or "--ascii"). We can’t use
0s.Args[0] in the append() call because the first argument must be a slice, so we
use 0s.Args[:1] which is a one-item slice containing os.Args[0] (§4.2.1,153 <«). If
the ASCII argument isn’t present, we create the same version as we saw earlier
that works correctly on both 7-bit ASCII and UTF-8 Unicode strings. In the rest
of the program the IsPalindrome() function can be called normally, but the actual
code that gets executed will vary depending on which version was created. (The
source code for this example is in palindrome/palindrome.go.)

5.6.6. Generic Functions

Earlier in the chapter we created a function for finding the smallest of the int
arguments it was passed (221 <). The algorithm used in that function could
also be applied to other numeric types, or even to strings, since it works for any
type that supports the < less than operator. In C++, for cases like this, we would
create a generic function that is parameterized by type which would result in
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the compiler creating as many versions of the function as we need (i.e., one
per type used). In Go, at the time of this writing, there is no support for type
parameterization, so to get the same effect as C++ achieves we must manually
create the functions we need (e.g., MinimumInt (), MinimumFloat (), MinimumString()).
This way we end up with one function per type used (just like in C++, except that
in Go each function must have a unique name).

Go offers various alternative approaches which avoid the need to create func-
tions that are the same except for the types they operate on, at the cost of some
runtime efficiency. For small functions that are not used often or which are
more than fast enough already, the alternative approaches can be convenient.

Here are some examples that use a generic Minimum() function.

i := Minimum(4, 3, 8, 2, 9).(int)

fmt.Printf("%T %v\n", i, i)

f := Minimum(9.4, -5.4, 3.8, 17.0, -3.1, 0.0).(float64)
fmt.Printf("%T %v\n", f, f)

s := Minimum("K", "x*, "B", "C", "cC", "CA", "D", "M").(string)
fmt.Printf("%T %g\n", s, s)

int 2
float64 -5.4
string "B"

The function returns a value of type interface{} which we convert to the built-in
type we expect using an unchecked type assertion (§5.1.2, 191 «).

func Minimum(first interface{}, rest ...interface{}) interface{} {
minimum := first
for , x := range rest {
switch x := x.(type) {
case int:
if x < minimum. (int) {
minimum = X
}
case float64:
if x < minimum. (float64) {
minimum = X
}
case string:
if x < minimum. (string) {
minimum = x

}
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return minimum

}

This function takes at least one value (first) and zero or more other values
(rest). We use the interface{} type since that can be used for any type in Go. We
initially assume that the first value is the smallest and then iterate over the
rest of the values. Whenever we find a value that is smaller than the current
minimum we set the minimum to this value. And at the end we return the
minimum—as an interface{}, hence the need to convert it to a built-in type at the
Minimum() function’s call site using an unchecked type assertion.

We still have duplicate code—in each case’s if statement’s block—but if there
were a lot of duplicate code we could simply set a Boolean in each case (e.g.,
change = true), and then follow the switch with an if change statement that
contained all the common code.

Clearly, using this Minimum() function is less efficient than having type-specific
minimum functions. However, it is worth knowing the technique because it is
useful for cases where the type testing overheads and conversion inconvenience
are outweighed by the advantage of having to define the function only once.

The problem of duplicate code within a generic function isn’t so easy to work
around if one or more of the interface{} arguments are actually slices. For
example, here is a function that, given a slice and an item of the same type as
the slice’s items, returns the index position of the first occurrence of the item in
the slice—or -1 if the item isn’t in the slice.

func Index(xs interface{}, x interface{}) int {
switch slice := xs.(type) {
case []int:
for i, y := range slice {
if y == x.(int) {
return i

}
}
case []string:
for i, y := range slice {
if y == x.(string) {
return i
}
}
}

return -1
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We have only bothered to implement the int and string cases—both of which
contain essentially the same code.

Here is an example of the Index() function in use and the output it produces.
(The code is taken from the contains/contains.go test program.)

xs := []lint{2, 4, 6, 8}

fmt.Println("5 @", Index(xs, 5), " 6 @", Index(xs, 6))

ys := []String{llcll' HBH' IIKII, IIAII}

fmt.Printin("Z @", Index(ys, "Z"), " A @", Index(ys, "A"))

5@-1 6@2
Z@-1 A@3

What we really need to be able to do is treat the slice generically—that way
we could have just one loop and do the type-specific testing inside it. Here is a
function that achieves this—and it produces the same output as the above code
snippet if we replace calls to Index() with calls to IndexReflectX().

func IndexReflectX(xs interface{}, x interface{}) int { // Long-winded way
if slice := reflect.ValueOf(xs); slice.Kind() == reflect.Slice {
for i := 0; i < slice.Len(); i++ {
switch y := slice.Index(i).Interface().(type) {
case int:
if y == x.(int) {
return i
}
case string:
if y == x.(string) {
return i

}

}
}

return -1

}

The function begins by using Go’s reflection support (provided by the reflect
package; §9.4.9, » 427), to convert the xs interface{} into a slice-typed re-
flect.Value. Such values provide the methods we need to traverse the slice’s
items and to extract any items we are interested in. Here, we access each item
in turn and use the reflect.Value.Interface() function to pull out the value as
an interface{} which we immediately assign to y inside a type switch. This en-
sures that y has the item’s actual type (e.g., int or string) which can be directly
compared with the unchecked type-asserted x value.
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In fact, the reflect package can take on far more of the work, so we can simplify
this function considerably.

func IndexReflect(xs interface{}, x interface{}) int {
if slice := reflect.ValueOf(xs); slice.Kind() == reflect.Slice {
for i := 0; 1 < slice.Len(); i++ {
if reflect.DeepEqual(x, slice.Index(i)) {
return i

}
}
}
return -1

}

Here we rely on the reflect.DeepEqual() function to do the comparison for us.

This versatile reflection function can also be used to compare arrays, slices, and
structs.

Here is a type-specific function for finding the index of an item in a slice.

func IntSliceIndex(xs []int, x int) int {
for i, y := range xs {

if x ==y {
return i
}
}
return -1

}

This is much nicer and simpler than the generic versions but requires us to
create one function like this per type we want to work on—with the only changes
being their names and the types specified in the functions’ signatures.

We can combine the benefits of a generic approach—implementing one algo-
rithm—with the simplicity and efficiency of type-specific functions by using cus-
tom types, a topic that is covered more thoroughly in the next chapter.

Here is a type-specific function for finding the index position of an item in an
[1int and the generic function it uses to do the actual work.

func IntIndexSlicer(ints []int, x int) int {
return IndexSlicer(IntSlice(ints), x)

}

func IndexSlicer(slice Slicer, x interface{}) int {
for i := 0; 1 < slice.Len(); i++ {
if slice.EqualTo(i, x) {
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return i
}
}

return -1

}

The IntIndexSlicer() function takes an []int to search and an int to find and
passes these on to the generic IndexSlicer() function. The IndexSlicer() func-
tion operates in terms of a Slicer value—the Slicer type is a custom interface
that is met by any value that provides the Slicer methods (Slicer.EqualTo() and
Slicer.Len()).

type Slicer interface {
EqualTo(i int, x interface{}) bool
Len() int

}

type IntSlice []int

func (slice IntSlice) EqualTo(i int, x interface{}) bool {
return slice[i] == x.(int)
}

func (slice IntSlice) Len() int { return len(slice) }

The Slicer interface specifies the two methods we need to implement the generic
IndexSlicer() function.

The IntSlice type is based on an []int (which is why the IntIndexSlicer()
function can convert the []int it is passed into an IntSlice without formali-
ty), and implements the two methods required to fulfill the Slicer interface.
The IntSlice.EqualTo() method takes a slice index position and a value and re-
turns true if the item at the given index is equal to the value. The Slicer inter-
face specifies the value as a generic interface{} rather than an int so that the
Slicer interface can be implemented by other slice types (e.g., FloatSlice and
StringSlice), so we must convert the value to the actual type. In this case we
can safely use an unchecked type assertion because we know that the value ul-
timately comes from a call to the IntIndexSlicer() function which has a corre-
sponding int argument.

We can implement other custom slice types that satisfy the Slicer interface and
can then be used with the generic IndexSlicer() function.
type StringSlice []string

func (slice StringSlice) EqualTo(i int, x interface{}) bool {
return slice[i] == x.(string)

}
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func (slice StringSlice) Len() int { return len(slice) }

The only difference between the StringSlice and the IntSlice is the underlying
slice’s type ([1string rather than []int) and the unchecked type assertion’s type
(string vs. int). The same applies to the FloatSlice (which uses []float64 and
float64).

This last example uses techniques that we saw earlier when we discussed
custom sorting (§4.2.4, 160 <), and are used to implement the standard library’s
sort package’s sort functions. Full coverage of custom interfaces and custom
types is provided in Chapter 6.

When working with slices (or maps) it is often possible to create generic func-
tions that don’t need to do type testing or type assertions, and that don’t need to
use custom interfaces. Instead, we can make our generic functions higher order
functions that abstract away all the type-specific aspects, as we will see in the
next subsection.

5.6.7. Higher Order Functions

A higher order function is a function that takes one or more other functions as
arguments and uses them in its own body.

Let’s look at a very short and simple higher order function—but one whose
functionality may not be immediately apparent.

func SliceIndex(limit int, predicate func(i int) bool) int {
for i := 0; 1 < limit; i++ {
if predicate(i) {
return i
}
}
return -1

}

This is a generic function that returns the index position of an item in a slice for
which the predicate() function returns true. So, this function can do exactly the
same job as the Index(), IndexReflect(), IntSliceIndex(), and IntIndexSlicer()
functions discussed in the previous subsection—but with no code duplication
and no type switching or type assertions.

The SliceIndex() function doesn’t know or care about the slice’s or the item’s
types—indeed, the function knows nothing of the slice or the item it (indirect-
ly) operates on. The function expects its first argument to be the length of the
slice and the second argument to be a function that returns a Boolean for any
given index position in the slice indicating whether the desired item is at that
position.
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Here are four example calls and their results.

xs := [lint{2, 4, 6, 8}
ys := []string{"C", "B", "K", "A"}
fmt.Printlin(
SliceIndex(len(xs), func(i int) bool { return xs[i] == 5 }),
SliceIndex(len(xs), func(i int) bool { return xs[i] == 6 }),
( ), (
( ), (

SliceIndex(len(ys), func(i int) bool { return ys[i] == "Z" }),
SliceIndex(len(ys), func(i int) bool { return ys[i] == "A" }))

-12-13

The anonymous functions passed as second arguments to the SliceIndex()
function are, of course, closures—so the slices they refer to (xs and ys) must be
in scope when these functions are created. (The technique used here is the same
as Go’s standard library uses for the sort.Search() function.)

In fact, the SliceIndex() function is a general-purpose function that need not
have anything to do with slices.

i := SliceIndex(math.MaxInt32,
func(i int) bool { return i > 0 && i%27 == 0 && i%51 == 0 })
fmt.Println(i)

459

In this snippet we have used the SliceIndex() function to find the least nat-
ural number that is divisible by both 27 and 51. The way this works is slight-
ly subtle. The SlicelIndex() function iterates from O to the given limit (in this
case math.MaxInt32), and at each iteration i